.如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。动点M、N分别 从点D、B同时出发,沿
展开全部
如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值.
(是这道题吗?如果是,就能解喽)
解:(1)∵ 过 三边的中点作 PQW
∴ PQ‖FN
∴ ∽ QWP
(2) 当0≤x≤4时,DM=NB=x,MA=4-x,AN=6-x
MF2=4+x2
NF2=(4-x)2+4=x2-8x+32
MN2=(4-x)2+(6-x)2=2x2-20x+52
由(1)得 ∽ QWP
① 若 ∠PQW=∠QWP=900
MN2 = MF2+ NF2
化简得 12x =16
∴ x=
② 若 ∠PQW=∠FMN=900
NF2 =MN2 +MF2
即 x2-6x+12=0
此方程无解
③若 ∠PQW=∠MNF=900
MF2 = NF2 +MN2
即 x-14x+40=0
∴ x=4或x=10(舍去)
综上所述,设0≤x≤4,当x= 或x=4时, PQW为直角三角形?
当0≤x≤4,当x≠ 且x≠4时, PQW不为直角三角形
(3) 由题意得, AM=4-x ,AN=6-x
MN2=AM2+AN2 =(4-x)2+(6-x)2=2x2-20x+80=2(x-5)2+30
所以. 当x=5时,MN最短,MN = 根号30
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值.
(是这道题吗?如果是,就能解喽)
解:(1)∵ 过 三边的中点作 PQW
∴ PQ‖FN
∴ ∽ QWP
(2) 当0≤x≤4时,DM=NB=x,MA=4-x,AN=6-x
MF2=4+x2
NF2=(4-x)2+4=x2-8x+32
MN2=(4-x)2+(6-x)2=2x2-20x+52
由(1)得 ∽ QWP
① 若 ∠PQW=∠QWP=900
MN2 = MF2+ NF2
化简得 12x =16
∴ x=
② 若 ∠PQW=∠FMN=900
NF2 =MN2 +MF2
即 x2-6x+12=0
此方程无解
③若 ∠PQW=∠MNF=900
MF2 = NF2 +MN2
即 x-14x+40=0
∴ x=4或x=10(舍去)
综上所述,设0≤x≤4,当x= 或x=4时, PQW为直角三角形?
当0≤x≤4,当x≠ 且x≠4时, PQW不为直角三角形
(3) 由题意得, AM=4-x ,AN=6-x
MN2=AM2+AN2 =(4-x)2+(6-x)2=2x2-20x+80=2(x-5)2+30
所以. 当x=5时,MN最短,MN = 根号30
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询