已知向量m=(√3sinx/4,1),n=(cosx/4,cos2x/4)记函数f(x)=m*n,
在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围...
在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围
展开
展开全部
m=(√3sinx/4,1),n=(cosx/4,cos2x/4)
f(x)=m*n=√3sinx/4*cosx/4+cos2x/4
=(√3/2)*2sinx/4*cosx/4+(1/2)(1+cosx/2)
=cos(π/6)sinx/2+sin(π/6)cosx/2+1/2
=sin(x/2+π/6)+1/2
利用正弦定理:a=2RsinA,b=2RsinB,c=2RsinC,代入
(2a-c)cosB=bcosC 得到:
4RsinAcosB-2RsinCcosB=2RsinBcosC
消去2R,移项:
2sinAcosB=sinBcosC+cosBsinC=sin(B+C)=sinA
cosB=1/2, B=π/3 A+C=2π/3
0<A<2π/3 0<A/2<π/3 π/6<A/2+π/6<π/2
1/2<sin(x/2+π/6)<1
1<sin(x/2+π/6)+1/2<3/2
f(A)=sin(A/2+π/6)+1/2
1<f(A)<3/2
即:f(A)的取值范围是(1,3/2)
f(x)=m*n=√3sinx/4*cosx/4+cos2x/4
=(√3/2)*2sinx/4*cosx/4+(1/2)(1+cosx/2)
=cos(π/6)sinx/2+sin(π/6)cosx/2+1/2
=sin(x/2+π/6)+1/2
利用正弦定理:a=2RsinA,b=2RsinB,c=2RsinC,代入
(2a-c)cosB=bcosC 得到:
4RsinAcosB-2RsinCcosB=2RsinBcosC
消去2R,移项:
2sinAcosB=sinBcosC+cosBsinC=sin(B+C)=sinA
cosB=1/2, B=π/3 A+C=2π/3
0<A<2π/3 0<A/2<π/3 π/6<A/2+π/6<π/2
1/2<sin(x/2+π/6)<1
1<sin(x/2+π/6)+1/2<3/2
f(A)=sin(A/2+π/6)+1/2
1<f(A)<3/2
即:f(A)的取值范围是(1,3/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询