已知函数∫(x)=2√3sinxcosx+2cos2x-1(x∈R)
(1)求函数∫(x)的最小正周期及在区间[0,π/2]上的最大值和最小值;(2)若∫(x0)=6/5,x0∈[π/4,π/2],求cos2x0的值...
(1)求函数∫(x)的最小正周期及在区间[0,π/2]上的最大值和最小值;
(2)若∫(x0)=6/5,x0∈[π/4,π/2],求cos2x0的值 展开
(2)若∫(x0)=6/5,x0∈[π/4,π/2],求cos2x0的值 展开
1个回答
展开全部
1
f(x)=2√3sinxcosx+2cos2x-1
=√3sin2x+cos2x
=2sin(2x+π/6)
最小正周期T=2π/2=π
∵x∈[0,π/2]∴2x+π/6∈[π/6,7π/6]
∴2x+π/6=π/2时,f(x)max=2
2x+π/6=7π/6时,f(x)min=-1
2
f(x0)=6/5 ,即 2sin(2x0+π/6)=6/5
∴sin(2x0+π/6)=3/5
∵ x0∈[π/4,π/2],
∴2x0+π/6∈[2π/3,7π/6]
∴cos(2x0+π/6)=-4/5
∴cos2x0=cos[(2x0+π/6)-π/6]
=cos(2x0+π/6)cosπ/6+sin(2x0+π/6)sinπ/6
=-4/5×√3/2+3/5×1/2=(3-4√3)/10
f(x)=2√3sinxcosx+2cos2x-1
=√3sin2x+cos2x
=2sin(2x+π/6)
最小正周期T=2π/2=π
∵x∈[0,π/2]∴2x+π/6∈[π/6,7π/6]
∴2x+π/6=π/2时,f(x)max=2
2x+π/6=7π/6时,f(x)min=-1
2
f(x0)=6/5 ,即 2sin(2x0+π/6)=6/5
∴sin(2x0+π/6)=3/5
∵ x0∈[π/4,π/2],
∴2x0+π/6∈[2π/3,7π/6]
∴cos(2x0+π/6)=-4/5
∴cos2x0=cos[(2x0+π/6)-π/6]
=cos(2x0+π/6)cosπ/6+sin(2x0+π/6)sinπ/6
=-4/5×√3/2+3/5×1/2=(3-4√3)/10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询