有两道线性代数题,求解题思路!!!
1.设A=(1,2,3),B=(1,1,1)T,则AB=(),BA=()答案是AB=6,BA=(123123123)求解题过程!2.已知矩阵A=(1-22-2-2424x...
1.设A=(1,2,3),B=(1,1,1)T,则AB=( ),BA=( )
答案是AB=6,BA=( 1 2 3
1 2 3
1 2 3 ) 求解题过程!
2.已知矩阵A=( 1 -2 2
-2 -2 4
2 4 x ) 有特征值 λ1=-7,λ2=λ3=2,则x=( )
答案 x=-2 求解题过程!
求各位智者帮帮忙,谢谢!! 展开
答案是AB=6,BA=( 1 2 3
1 2 3
1 2 3 ) 求解题过程!
2.已知矩阵A=( 1 -2 2
-2 -2 4
2 4 x ) 有特征值 λ1=-7,λ2=λ3=2,则x=( )
答案 x=-2 求解题过程!
求各位智者帮帮忙,谢谢!! 展开
1个回答
展开全部
1、两个矩阵相乘的时候,结果矩阵的行数是前面那个矩阵的行数,列数是后面那个矩阵的列数。就好比你的题,A是一行三列,B是三行一列,所以AB就是一行(A的行数)一列(B的列数),而BA就是三行(B的行数)三列(A的列数)。
AB为一行一列,所以结果就是A的第一行乘以B的第一列1*1+2*1+3*1=6
BA为三行三列,第一行第一列就是B的第一行乘以A的第一列,第一行第二列就是B的第一行乘以A的第二列,以此类推BA=( 1 2 3
1 2 3
1 2 3 )
2、特征值的和等于矩阵主对角线元素的和,所以1+(-2)+x=-7+2+2,解得,x=-2
AB为一行一列,所以结果就是A的第一行乘以B的第一列1*1+2*1+3*1=6
BA为三行三列,第一行第一列就是B的第一行乘以A的第一列,第一行第二列就是B的第一行乘以A的第二列,以此类推BA=( 1 2 3
1 2 3
1 2 3 )
2、特征值的和等于矩阵主对角线元素的和,所以1+(-2)+x=-7+2+2,解得,x=-2
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询