探索三角形全等的条件,题目 , 求解!!!!!!!
如图,在三角形ABC中,∠BAC=90°,AB=AC,BD是中线,AF⊥BD,F是垂足,过C点做AB的平行线交AF的延长线于E点求证:(1)∠ABD=∠FAD;(2)CD...
如图,在三角形ABC中,∠BAC=90°,AB=AC,BD是中线,AF⊥BD,F是垂足,过C点做AB的平行线交AF的延长线于E点
求证:(1)∠ABD=∠FAD;(2)CD=CE.
快!!!!!!!!!赶时间啊!!!!!!! 展开
求证:(1)∠ABD=∠FAD;(2)CD=CE.
快!!!!!!!!!赶时间啊!!!!!!! 展开
2个回答
展开全部
证明:
1、
∵∠BAC=90
∴∠BAF+∠FAD=90
∵AF⊥BD
∴∠BAF+∠ABD=90
∴∠ABD=∠FAD
2、
∵CE∥AB,∠BAC=90
∴∠ACE=180-∠BAC=180-90=90
∴∠ACE=∠BAC
∵∠ABD=∠FAD,AB=AC
∴△ABD≌△CAE
∴AD=CE
∵BD是中线
∴AD=CD
∴CD=CE
1、
∵∠BAC=90
∴∠BAF+∠FAD=90
∵AF⊥BD
∴∠BAF+∠ABD=90
∴∠ABD=∠FAD
2、
∵CE∥AB,∠BAC=90
∴∠ACE=180-∠BAC=180-90=90
∴∠ACE=∠BAC
∵∠ABD=∠FAD,AB=AC
∴△ABD≌△CAE
∴AD=CE
∵BD是中线
∴AD=CD
∴CD=CE
追问
能不能加一下理由啊?
追答
证明:
1、
∵∠BAC=90
∴∠BAF+∠FAD=90
∵AF⊥BD
∴∠BAF+∠ABD=90
∴∠ABD=∠FAD
2、
∵CE∥AB,∠BAC=90
∴∠ACE=180-∠BAC=180-90=90 (两直线平行,同旁内角互补)
∴∠ACE=∠BAC
∵∠ABD=∠FAD,AB=AC
∴△ABD≌△CAE (SAS)
∴AD=CE
∵BD是中线
∴AD=CD
∴CD=CE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询