初中几何题(平行四边形)

如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)... 如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.
(1)若点D是BC边的中点(如图①),求证:EF=CD;
(2)在(1)的条件下直接写出△AEF和△ABC的面积比;
(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
展开
chyzl2007
2012-05-09
知道答主
回答量:32
采纳率:0%
帮助的人:11.5万
展开全部
1. 证明:AD⊥BC 且△ABC是等边三角形
=>∠BAD=30°又△DAE是等边三角形
=>AB⊥DE 又CF∥DE
=>CF⊥AB AD⊥BC
=>AD=CF 又△DAE是等边三角形
=>CF=DE CF∥DE
=>□DEFC是平行四边形
=>EF=CD
2. 设△ABC的边是X 则△ABC的面积为 /4 X
△ADE面积为3 /16 X △AEF面积=1/3△ADE面积
所以△AEF和△ABC的面积比是1:4
3. 成立。
CF∥DE
=>∠BDE=∠BCF
∠CFA=∠B+∠BCF ∠B=∠ADE=60°
∴∠BDA=∠CFA AC=AB ∠B=∠BAC=60°
△CFA≌BDA
∴△CF=DE 又 CF∥DE
∴EF=CD
hongfa1961
2012-05-10 · TA获得超过261个赞
知道答主
回答量:201
采纳率:0%
帮助的人:137万
展开全部
⑴证:∵D是等边△ABC中BC边的中点,∴∠BAD=30º、AD⊥BC、AB=AC、∠B=∠FAC=∠ACB=60º
∵△ADE是等边三角形 ∴∠ADE=60º、AD=DE ∴∠BDE=∠BDA-∠ADE=90º-60º=30º
∵CF∥DE ∴∠BDE=∠BCF=30º ∴∠ACF=∠ACB-∠BCF=60º-30º=30º
在△ABD和△CAF中
∠B=FAC、AB=AC 、∠BAD=∠ACF=30º
∴△ABD≌△CAF (ASA) ∴CF=AD
∵AD=DE ∴CF=DE ∵CF∥DE ∴四边形EDCF是平行四边形 ∴EF=CD.
⑵ △AEF与△ABC的面积比是1∶4.
⑶ ⑴中的结论仍然成立。证明如下:
已经证得∠B=∠ADE=60º ∠BDE=∠BCF
∴∠AFC=∠B+∠BCF=60º+∠BCF﹙外角定理﹚
∠ADB=∠ADE+∠BDE=60º+∠BDE
∴∠ADB=∠AFC﹙等量代换﹚
在△ADB和△CFA中
∠B=∠CAF=60º ∠ADB=∠CFA AB=AC ∴△ADB≌△CFA﹙AAS﹚ ∴AD=CA
然后依⑴的证法可得四边形EDCF为平行四边形,∴结论成立。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友22b85d4
2012-05-10 · TA获得超过179个赞
知道答主
回答量:248
采纳率:0%
帮助的人:109万
展开全部
(1)若点D是BC边的中点(如图①),求证:EF=CD;
(2)在(1)的条件下直接写出△AEF和△ABC的面积比;
(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由

(1)若点D是BC边的中点(如图①),求证:EF=CD;
证明:∵△ABC和△ADE为等边三角形 D是BC边的中点
∠ABD=∠FAC=∠ADE=60°
∴BD=CD ∠ADB=90° ∠BAD=30° ∠BDE=90°-60°=30°
∵CF∥DE
∴∠BCF=30° ∠ACF=60°-30°=30°
∵AC=AB ∠ABC=∠BAC=60°
∴ △ADB≌△CFA
∴CF=AD=DE 又∵CF∥DE
∴CDEF为平行四边形
∴EF=CD
(2)在(1)的条件下直接写出△AEF和△ABC的面积比为1/4。
(3)若点D是BC边上的任意一点(除B、C外如图②), 那么(1)中的结论仍然成立。
证明: ∵CF∥DE △ABC和△ADE为等边三角形
∠BDE=∠BCF ∠ADE=∠ABD=60°
∵∠AFC=∠ABD+∠BCF ∠AFC∠ADB=∠ADE+∠BDE
∴ ∠AFC=∠AFC
又∵∠ABD=∠FAC=60° AB=AC
∴ △ADB≌△CFA
∴ CF=AD=DE 又∵CF∥DE
∴CDEF为平行四边形
∴ EF=CD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
鼻顶呗o
2012-05-09 · 超过10用户采纳过TA的回答
知道答主
回答量:39
采纳率:0%
帮助的人:24.1万
展开全部
如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.
(1)若点D是BC边的中点(如图①),求证:EF=CD;
(2)在(1)的条件下直接写出△AEF和△ABC的面积比;
(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由

(1)若点D是BC边的中点(如图①),求证:EF=CD;
证明:∵△ABC和△ADE为等边三角形 D是BC边的中点
∠ABD=∠FAC=∠ADE=60°
∴BD=CD ∠ADB=90° ∠BAD=30° ∠BDE=90°-60°=30°
∵CF∥DE
∴∠BCF=30° ∠ACF=60°-30°=30°
∵AC=AB ∠ABC=∠BAC=60°
∴ △ADB≌△CFA
∴CF=AD=DE 又∵CF∥DE
∴CDEF为平行四边形
∴EF=CD
(2)在(1)的条件下直接写出△AEF和△ABC的面积比为1/4。
(3)若点D是BC边上的任意一点(除B、C外如图②), 那么(1)中的结论仍然成立。
证明: ∵CF∥DE △ABC和△ADE为等边三角形
∠BDE=∠BCF ∠ADE=∠ABD=60°
∵∠AFC=∠ABD+∠BCF ∠AFC∠ADB=∠ADE+∠BDE
∴ ∠AFC=∠AFC
又∵∠ABD=∠FAC=60° AB=AC
∴ △ADB≌△CFA
∴ CF=AD=DE 又∵CF∥DE
∴CDEF为平行四边形
∴ EF=CD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sjdszb
2012-05-09
知道答主
回答量:3
采纳率:0%
帮助的人:4791
展开全部
(1)因为都是等边三角形,所以相似,且三角形ADE相当于三角形ABC缩小后旋转了30度(直角ADB-角ADE得到角BDE)因为CF平行于DE,则角FCD=30度,说明CF也中三角形ABC的中线,等于AD也等于DE,CF平行且相等于DE所以CD平行且等于EF.
ADE的底和高分别上ABC的二分之根号3倍,所以面积之比:大比小为4:3
(3)成立证明方法同(1)只是旋转度数不一样.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式