正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB落在X轴的正半轴上,CD落在第一象限
经过点C的直线y=三分之四x-三分之八交x轴与点E(2)在做表平面内,求出经过点E且将正方形ABCD分成面积相等的两部分的直线...
经过点C的直线y=三分之四x-三分之八交x轴与点E(2)在做表平面内,求出经过点E且将正方形ABCD分成面积相等的两部分的直线
展开
2个回答
展开全部
不妨设PA=k,PB=2k,PC=3k。
将△PBC绕B点逆时针旋转90°至BC与AB重合,得到一个新的△AQB,可知:BQ=PB=2k,QA=PC=3k,∠ABQ=∠PBC,
由于∠PBC+∠ABP=90°,所以∠PBQ=∠ABQ+∠ABP=∠PBC+∠ABP=90°,则△PBQ是一个等腰直角三角形,
故:∠BPQ=45°,
由勾股定理,得:PQ^2=PB^2+BQ^2=(2k)^2+(2k)^2=8k^2,
另外,在△APQ中,PA^2+PQ^2=k^2+8k^2=9k^2=QA^2,由勾股定理知:△APQ是一个以∠APQ为直角的直角三角形,即∠APQ=90°。
综上得:∠APB=∠APQ+∠BPQ=90°+45°=135°。
将△PBC绕B点逆时针旋转90°至BC与AB重合,得到一个新的△AQB,可知:BQ=PB=2k,QA=PC=3k,∠ABQ=∠PBC,
由于∠PBC+∠ABP=90°,所以∠PBQ=∠ABQ+∠ABP=∠PBC+∠ABP=90°,则△PBQ是一个等腰直角三角形,
故:∠BPQ=45°,
由勾股定理,得:PQ^2=PB^2+BQ^2=(2k)^2+(2k)^2=8k^2,
另外,在△APQ中,PA^2+PQ^2=k^2+8k^2=9k^2=QA^2,由勾股定理知:△APQ是一个以∠APQ为直角的直角三角形,即∠APQ=90°。
综上得:∠APB=∠APQ+∠BPQ=90°+45°=135°。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询