看上去简单却十分难的一道几何证明题 求数学高手解答
如图,△ABC中,BE、CD分别是∠ABC,∠ACB的角平分线,且BE=CD。求证:△ABC是等腰三角形。...
如图,△ABC中,BE、CD分别是∠ABC,∠ACB的角平分线,且BE=CD。求证:△ABC是等腰三角形。
展开
6个回答
展开全部
如图,已知△ABC中,两内角的平分线BD=CE。求证:AB=AC。
证法①
作∠BDF=∠BCE;并使DF=BC
∵BD=EC,
∴△BDF≌△ECB,BF=BE,∠BEC=∠DBF.
示意图
设∠ABD=∠DBC=α,∠ACE=∠ECB=β,
∠FBC=∠BEC+α=180°-2α-β+α=180°-(α+β);
∠CDF=∠FDB+∠CDB=β+180-2β-α=180°-(α+β);
∴∠FBC=∠CDF,
∵2α+2β<180°,
∴α+β<90°,
∴∠FBC=∠CDF>90°
∴过C点作FB的垂线和过F点作CD的垂线必都在FB和CD的延长线上.
设垂足分别为G、H;∠HDF=∠CBG;∵BC=DF,∴Rt△CGB≌Rt△FHD,∴CG=FH,BC=FD
连接CF,∵CF=FC,FH=CG,∴Rt△CGF≌△FHC(HL),∴FG=CH, 又∵BG=DH,∴BF=CD, 又∵BF=BE,∴CD=BE,∵BE=CD,BC=CB,EC=DB,∴△BEC≌△CDB,∴∠ABC=∠ACB
∴AB=AC.
证法②
设二角的一半分别为α、β
sin(2α+β)/ sin2α= BC/CE = BC/BD = sin(α+2β)/ sin2β,
∴2sinαcosαsin(α+2β) - 2sinβcosβsin(2α+β) =0
→sinα[sin2(α+β)+sin 2β]- sinβ[sin2(α+β)+ sin2α]=0
→sin2(α+β)[sinα-sinβ]+2 sinαsinβ[cosβ- cosα]=0
→sin [(α-β)/2][sin2(α+β) cos[(α+β)/2] + 2 sinαsinβsin [(α+β)/2]=0
,∴sin[(α-β)/2]=0
∴α=β,∴AB=AC.
证法③
用张角定理:
2cosα/BE=1/BC+1/AB
2cosβ/CD=1/BC+1/AC
若α>β 可推出AB>AC矛盾!
若α<β 可推出AB <AC矛盾!
所以AB=AC
证法①
作∠BDF=∠BCE;并使DF=BC
∵BD=EC,
∴△BDF≌△ECB,BF=BE,∠BEC=∠DBF.
示意图
设∠ABD=∠DBC=α,∠ACE=∠ECB=β,
∠FBC=∠BEC+α=180°-2α-β+α=180°-(α+β);
∠CDF=∠FDB+∠CDB=β+180-2β-α=180°-(α+β);
∴∠FBC=∠CDF,
∵2α+2β<180°,
∴α+β<90°,
∴∠FBC=∠CDF>90°
∴过C点作FB的垂线和过F点作CD的垂线必都在FB和CD的延长线上.
设垂足分别为G、H;∠HDF=∠CBG;∵BC=DF,∴Rt△CGB≌Rt△FHD,∴CG=FH,BC=FD
连接CF,∵CF=FC,FH=CG,∴Rt△CGF≌△FHC(HL),∴FG=CH, 又∵BG=DH,∴BF=CD, 又∵BF=BE,∴CD=BE,∵BE=CD,BC=CB,EC=DB,∴△BEC≌△CDB,∴∠ABC=∠ACB
∴AB=AC.
证法②
设二角的一半分别为α、β
sin(2α+β)/ sin2α= BC/CE = BC/BD = sin(α+2β)/ sin2β,
∴2sinαcosαsin(α+2β) - 2sinβcosβsin(2α+β) =0
→sinα[sin2(α+β)+sin 2β]- sinβ[sin2(α+β)+ sin2α]=0
→sin2(α+β)[sinα-sinβ]+2 sinαsinβ[cosβ- cosα]=0
→sin [(α-β)/2][sin2(α+β) cos[(α+β)/2] + 2 sinαsinβsin [(α+β)/2]=0
,∴sin[(α-β)/2]=0
∴α=β,∴AB=AC.
证法③
用张角定理:
2cosα/BE=1/BC+1/AB
2cosβ/CD=1/BC+1/AC
若α>β 可推出AB>AC矛盾!
若α<β 可推出AB <AC矛盾!
所以AB=AC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询