一道几何题,以带图,要完整步骤
如图,四边形ABCD是菱形,DF⊥BC,垂足为F,点G在BA的延长线上,DG=AB,求证:BG-BC=2CF...
如图,四边形ABCD是菱形,DF⊥BC,垂足为F,点G在BA的延长线上,DG=AB,求证:BG-BC=2CF
展开
展开全部
因为平行四边形ABCD是菱形,
所以 角BCD=角BAD=120度
且由题得知 DF垂直于BC,垂足为F,
故,得知,角DCF=60度,角CDF=30度
因菱形ABCD,AB=AD,且DG=AB,故DG=AD,
因为角BAD=120度,故角GAD=60度,
由此得出,三角形ADG为等边三角形。
BG-BC=BG-BA,故,求BG-BA=AG
在三角形DCF中,CF=1/2DC,
因为DC=AD=AG,所以,AG=2CF
即BG-BA=BG-BC=2CF
所以 角BCD=角BAD=120度
且由题得知 DF垂直于BC,垂足为F,
故,得知,角DCF=60度,角CDF=30度
因菱形ABCD,AB=AD,且DG=AB,故DG=AD,
因为角BAD=120度,故角GAD=60度,
由此得出,三角形ADG为等边三角形。
BG-BC=BG-BA,故,求BG-BA=AG
在三角形DCF中,CF=1/2DC,
因为DC=AD=AG,所以,AG=2CF
即BG-BA=BG-BC=2CF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询