约数是什么?
约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。
约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。
扩展资料:
约数的特殊情况公约数:
公约数,又称公因数。在数论的叙述中,如果n和d都是整数,而且存在某个整数c,使得n = cd,就说d是n的一个因数,或说n是d的一个倍数,记作d|n(读作d整除n)。如果d|a且d|b,就称d是a和b的一个公因数。
根据裴蜀定理,对每一对整数a,b,都有一个公因数d,使得d = ax+by,其中x和y是某些整数,并且a和b的每一个公因数都能整除这个d。于是d的绝对值叫做最大公因数。
参考资料来源:百度百科——约数
约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。
在大学之前,"约数"一词所指的一般只限于正约数。约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。
扩展资料:
任何正整数都是0的约数。
4的正约数有:1、2、4。
6的正约数有:1、2、3、6。
10的正约数有:1、2、5、10。
12的正约数有:1、2、3、4、6、12。
15的正约数有:1、3、5、15。
18的正约数有:1、2、3、6、9、18。
20的正约数有:1、2、4、5、10、20。
注意:一个数的约数必然包括1及其本身。
相关概念
如果一个数c既是数a的因数,又是数b的因数,那么c叫做a与b的公因数。
两个数的公因数中最大的一个,叫做这两个数的最大公因数。
约数,也叫因数。
参考资料来源:百度百科-约数
约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。
在大学之前,"约数"一词所指的一般只限于正约数。约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。
内容拓展:
负约数
国内课本中,最先提到约数这个概念是在小学,而此时还没学负数。
等到学了负数,一般要直到大学数学系"初等数论"中才严格定义约数,那个时候就包括负约数了。
如果d|a并且d≥0,则我们说d是a的约数。注意,d|a当且仅当(-d)|a,因此定义约数为非负整数不会失去一般性,只要明白a的任何约数的相应负数同样能整除a。一个整数a的正约数最小为1,最大为|a|。
约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。
在大学之前,"约数"一词所指的一般只限于正约数。约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。
内容拓展
负约数
国内课本中,最先提到约数这个概念是在小学,而此时还没学负数。
等到学了负数,一般要直到大学数学系"初等数论"中才严格定义约数,那个时候就包括负约数了。
如果d|a并且d≥0,则我们说d是a的约数。注意,d|a当且仅当(-d)|a,因此定义约数为非负整数不会失去一般性,只要明白a的任何约数的相应负数同样能整除a。一个整数a的正约数最小为1,最大为|a|。
约数和因数的区别有三点: 1、数域不同。约数只能是自然数,而因数可以是任何数。 2、关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8×2=16,8和2都是积16的因数,离开乘积算式就没有因数了。 3、大小关系不同.当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。 一般情况下,约数等于因数。
其实也没那么复杂,小学中就记住:约数就是因数~~
参考资料: http://baike.baidu.com/view/532121.htm