如图,在Rt△ABC和Rt△ADE中AB=AC,AD=AE,CE与BD相交于点M,BD交AC于点N。(1)

如图,在Rt△ABC和Rt△ADE中AB=AC,AD=AE,CE与BD相交于点M,BD交AC于点N。(1)证明BD=CE(2)证明:BD⊥CE;(3)当△ABC绕点A沿顺... 如图,在Rt△ABC和Rt△ADE中AB=AC,AD=AE,CE与BD相交于点M,BD交AC于点N。(1)证明BD=CE(2)证明:BD⊥CE;(3)当△ABC 绕点A沿顺时针方向旋转到如图②③④的位置时,上述结论是否成立?请选择其中的一个图加以证明。 展开
来自木渎古镇秀色可餐的周瑜
2012-05-15 · TA获得超过673个赞
知道小有建树答主
回答量:80
采纳率:0%
帮助的人:88.3万
展开全部
证明:(1)∵ABC,ADE为直角三角形
∴∠BAC=∠DAE=90°
∠BAC+∠CAD=∠CAD+∠DAE
即∠BAD=∠CAE
又∵AB=AC,AD=AE
∴△BAD≌△CAE(SAS)
BD=CE
(2)∵△BAD≌△CAE(SAS)
∴∠ABD=∠ACE
又∵∠BNA=∠CNM
∴∠CMN=∠CAB=90°
BD⊥CE
(3)上述结论都成立
图②中,延长DB交CE于F。
∵AC=AB,∠CAE=∠BAD=90°,AE=AD
∴△CAE≌△BAD(SAS)
BD=CE,∠CEA=∠BDA
又∵∠EBF=∠ABD
∴∠EFB=∠BAD=90°
BD⊥CE
图③和图④中,证明方法同上。都是先证明三角形全等,在找对应角相等。
卷卷发回家
2013-10-16 · TA获得超过1687个赞
知道小有建树答主
回答量:361
采纳率:0%
帮助的人:137万
展开全部
①证明:∵△ABC和△ADE是等腰直角三角形,
∴∠BAC=∠EAD=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD,
即∠BAD=∠EAC,
∵在△BAD和△CAE中
BA=AC
∠BAD=∠CAE
AE=AD
∴△BAD≌△CAE(SAS),
∴BD=CE;

②证明:∵△BAD≌△CAE,
∴∠AEC=∠ADB,
∵∠EAD=90°,
∴∠1+∠AEC=90°,
∵∠1=∠2,
∴∠2+∠ADB=90°,
∴∠DME=180°-90°=90°,
∴BD⊥CE;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
德国家中
2012-11-08 · TA获得超过1262个赞
知道小有建树答主
回答量:842
采纳率:0%
帮助的人:237万
展开全部

证明:(1)∵ABC,ADE为直角三角形
∴∠BAC=∠DAE=90°
∠BAC+∠CAD=∠CAD+∠DAE
即∠BAD=∠CAE
又∵AB=AC,AD=AE
∴△BAD≌△CAE(SAS)
BD=CE
(2)∵△BAD≌△CAE(SAS)
∴∠ABD=∠ACE
又∵∠BNA=∠CNM
∴∠CMN=∠CAB=90°
BD⊥CE
(3)上述结论都成立
图②中,延长DB交CE于F。
∵AC=AB,∠CAE=∠BAD=90°,AE=AD
∴△CAE≌△BAD(SAS)
BD=CE,∠CEA=∠BDA
又∵∠EBF=∠ABD
∴∠EFB=∠BAD=90°
BD⊥CE
图③和图④中,证明方法同上。都是先证明三角形全等,在找对应角相等
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式