第二型曲面积分用高斯公式的一道题
∫∫x^2dydz+y^2dzdx+z^2dxdy,面是x^2+y^2=z^2介于z=0和z=h,h>0,间的部分下侧。我算了好几遍都得0,但答案给的是-∏/2h^4,谁...
∫∫x^2dydz+y^2dzdx+z^2dxdy,面是x^2+y^2=z^2介于z=0和z=h,h>0,间的部分下侧。我算了好几遍都得0,但答案给的是-∏/2h^4,谁能帮我算一下,我那里算错了,求具体步骤
展开
展开全部
结果应该为-πh^4/2 ,而不是-∏/2h^4 更不是0
解答:这道题目满足高斯公式的条件,所以用高斯公式很简单。先添加平面z=h,取上侧。构成一个封闭的曲面,这个封闭曲面整个外侧方向。
于是∫∫x^2dydz+y^2dzdx+z^2dxdy=2∫∫∫(x+y+z)dxdydz -∫∫x^2dydz+y^2dzdx+z^2dxdy(减去的这个积分曲面为z=h ,注最后一定要减去这个添加的平面)
先计算三重积分2∫∫∫(x+y+z)dxdydz =2∫∫∫z dxdydz (这里利用了对称性,因为此三重积分的区域关于平面X=0和y=0对称,且被积式分别为x和y的奇次方,所以它们的积分值为0 )于是只需要计算 2∫∫∫z dxdydz =2∫(0,2π)dθ∫(0,h) ρ dρ ∫(ρ,h) z dz =πh^4/2
而∫∫x^2dydz+y^2dzdx+z^2dxdy(积分曲面为z=h上侧)=前两项值为0,因为平面z=h分别向x=0 和y=0面投影时的面积为0(实际上投影面为一个线段,知道为什么为0吗?这是因为dydz=cosα dS ,其中cosα=cos90°=0),所以曲面积分的值为0 。于是只需要计算后面∫∫z^2dxdy =∫∫h^2dxdy 这里已经转化为一个二重积分了 ,根本不需要计算,直接=πh^4
最后结果为πh^4/2 - πh^4 = -πh^4/2
解答:这道题目满足高斯公式的条件,所以用高斯公式很简单。先添加平面z=h,取上侧。构成一个封闭的曲面,这个封闭曲面整个外侧方向。
于是∫∫x^2dydz+y^2dzdx+z^2dxdy=2∫∫∫(x+y+z)dxdydz -∫∫x^2dydz+y^2dzdx+z^2dxdy(减去的这个积分曲面为z=h ,注最后一定要减去这个添加的平面)
先计算三重积分2∫∫∫(x+y+z)dxdydz =2∫∫∫z dxdydz (这里利用了对称性,因为此三重积分的区域关于平面X=0和y=0对称,且被积式分别为x和y的奇次方,所以它们的积分值为0 )于是只需要计算 2∫∫∫z dxdydz =2∫(0,2π)dθ∫(0,h) ρ dρ ∫(ρ,h) z dz =πh^4/2
而∫∫x^2dydz+y^2dzdx+z^2dxdy(积分曲面为z=h上侧)=前两项值为0,因为平面z=h分别向x=0 和y=0面投影时的面积为0(实际上投影面为一个线段,知道为什么为0吗?这是因为dydz=cosα dS ,其中cosα=cos90°=0),所以曲面积分的值为0 。于是只需要计算后面∫∫z^2dxdy =∫∫h^2dxdy 这里已经转化为一个二重积分了 ,根本不需要计算,直接=πh^4
最后结果为πh^4/2 - πh^4 = -πh^4/2
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
解:令p=2x,q=yz,r=-z²
∵αp/αx=2,αq/αy=z,αr/αz=-2z
∴根据高斯公式得
原式=∫∫∫
(αp/αx+αq/αy+αr/αz)dxdydz
(v是s围城的空间区域)
=∫∫∫
(2-z)dxdydz
=∫<0,2π>dθ∫<0,1>rdr∫
(2-z)dz
(应用柱面坐标变换)
=2π∫<0,1>[2r√(2-r²)-r-2r²+r³]dr
=2π[(-2/3)(2-r²)^(3/2)-r²/2-(2/3)r³+r^4/4]│<0,1>
=2π(-1/2-2/3+1/4+2/3)
=-π/2。
∵αp/αx=2,αq/αy=z,αr/αz=-2z
∴根据高斯公式得
原式=∫∫∫
(αp/αx+αq/αy+αr/αz)dxdydz
(v是s围城的空间区域)
=∫∫∫
(2-z)dxdydz
=∫<0,2π>dθ∫<0,1>rdr∫
(2-z)dz
(应用柱面坐标变换)
=2π∫<0,1>[2r√(2-r²)-r-2r²+r³]dr
=2π[(-2/3)(2-r²)^(3/2)-r²/2-(2/3)r³+r^4/4]│<0,1>
=2π(-1/2-2/3+1/4+2/3)
=-π/2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询