函数y=根号下(x^2-1)的单调递减区间为
3个回答
展开全部
设 u=x^2-1 u>=0 x<=-1或x>=1
y=√u 在定义域内是增函数
u=x^2-1 在(-无穷,-1】减函数 在【1,+无穷)增函数
复合函数同增异减
所以 y=根号下(x^2-1)的单调递减区间为 (-无穷,-1】
y=√u 在定义域内是增函数
u=x^2-1 在(-无穷,-1】减函数 在【1,+无穷)增函数
复合函数同增异减
所以 y=根号下(x^2-1)的单调递减区间为 (-无穷,-1】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原函数拆成:
y=√t (外部函数)单调增,t=x^2-1 (内部函数)
函数的定义域 x≥1; 或x≤-1
根据题意:外部函数y=√t 单调增,复合函数y=√x^2-1 单调减,所以内部函数t=x^2-1 必须j是单调减
而函数t=x^2-1 的单调减区间是(-∝, -1]
即原函数的单调减区间为:(-∝, -1]
y=√t (外部函数)单调增,t=x^2-1 (内部函数)
函数的定义域 x≥1; 或x≤-1
根据题意:外部函数y=√t 单调增,复合函数y=√x^2-1 单调减,所以内部函数t=x^2-1 必须j是单调减
而函数t=x^2-1 的单调减区间是(-∝, -1]
即原函数的单调减区间为:(-∝, -1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询