求解啊啊啊!!!
展开全部
f(x)=2sin^2(wx+π/4)+2(cos^2wx)=1-cos(2wx+π/2)+cos(2wx)+1=sin(2wx)+cos(2wx)+2
=√2 sin(2wx+π/4)+2
两个相邻的最低点之间的距离=T=2π/2w=2π/3,所以w=3/2
f(x)=√2 sin(3x+π/4)+2
(1)f(x)的最大值2+√2
此时sin(3x+π/4)=1,3x+π/4=π/2+2kπ, x=π/12+2/3 kπ,
y=f(x)=√2 sin(3x+π/4)+2
右平移π/8个单位长度√2 sin(3(x-π/8)+π/4)+2=√2 sin(3x-π/8)+2
沿y轴对称后得到g(x)=√2 sin(π/8-3x)+2 = - √2 sin(3x-π/8)+2
递减区间-π/2+2kπ<3x-π/8<π/2+2kπ,则-π/8+2/3kπ<x<5/8π+2/3kπ
递增区间π/2+2kπ<3x-π/8<3π/2+2kπ,则5/8π+2/3kπ<x<13/8π+2/3kπ
=√2 sin(2wx+π/4)+2
两个相邻的最低点之间的距离=T=2π/2w=2π/3,所以w=3/2
f(x)=√2 sin(3x+π/4)+2
(1)f(x)的最大值2+√2
此时sin(3x+π/4)=1,3x+π/4=π/2+2kπ, x=π/12+2/3 kπ,
y=f(x)=√2 sin(3x+π/4)+2
右平移π/8个单位长度√2 sin(3(x-π/8)+π/4)+2=√2 sin(3x-π/8)+2
沿y轴对称后得到g(x)=√2 sin(π/8-3x)+2 = - √2 sin(3x-π/8)+2
递减区间-π/2+2kπ<3x-π/8<π/2+2kπ,则-π/8+2/3kπ<x<5/8π+2/3kπ
递增区间π/2+2kπ<3x-π/8<3π/2+2kπ,则5/8π+2/3kπ<x<13/8π+2/3kπ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询