怎样把混循环小数化成分数?
混循环小数化成分数的方法是:用第二个循环节以前的小数部分所组成的数,减去不循环部分所得的差,以这个差作为分数的分子;分母的前几位数字是9,末几位数字为0;9的个数与一个循环节的位数相同,0的个数与不循环部分的位数相同。
箭头所指是说明:循环节有一位写一个9,不循环部分有一位写一个0。
箭头所指说明:循环节有两位写两个9,不循环部分有一位写一个0。
箭头所指说明:循环节有两位写两个9,不循环部分有两位写两个0。
这种化的方法,比纯循环小数化成分数明显要复杂,但究其算理,仍依据纯小数化成分数的方法。即:先把混循环小数化成纯循环小数的形式,然后再化成分数。上面三个例题通过推导,都可以得到证明。
推导结果与例(3)的中间脱式一致。
由此可见,采用先扩大后缩小相同倍数的方法,根据纯循环小数化成分数的方法,证明混循环小数化成分数的方法是完全成立的。
①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。
②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。
扩展资料
无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。
例如:0.333333……
循环节为3
则0.3=3*10^(-1)+3*10^(-2)+……+3^10(-n)+……
前n项和为:30.1(1-(0.1)^(n))/(1-0.1)
当n趋向无穷时(0.1)^(n)=0
因此0.3333……=0.3/0.9=1/3
注意:m^n的意义为m的n次方。
方法2:设0.3333……,三的循环为x,
10x=3.3333……
10x-x=3.3333……-0.3333……
(注意:循环节被抵消了)
9x=3
3x=1
x=1/3
第二种:如,将3.305030503050……(3050为循环节)化为分数。
解:设:这个数的小数部分为a,这个小数表示成3+a
10000a-a=3050
9999a=3050
a=3050/9999
算到这里后,能约分就约分,这样就能表示循环部分了。再把整数部分乘分母加进去就是
(3×9999+3050)/9999
=33047/9999
还有混循环小数转分数
如0.1555……
循环节有一位,分母写个9,非循环节有一位,在9后添个0
分子为非循环节+循环节(连接)-非循环节+15-1=14
14/90
约分后为7/4
混循环小数化成小数