3个回答
2014-04-03
展开全部
(2)由第(1)算出an=n+1,a2=5<b2=14,假设n=k时,bk>ak=k+3,当n=k+1时,b(k+1)=(bk)^2-(k-1)bk-2,(bk)^2-(k-1)bk-2的对称轴(k-1)/2<k+1,故(bk)^2-(k-1)bk-2递增,即(bk)^2-(k-1)bk-2>(k+3)^2-(k-1)(k+3)-2=4k+10>k+4(k>2)=ak+1,即bk+1>ak+1。综上有bn>an。
(3)先证ln(1+x)<x,(x>0),令f(x)=ln(1+x)-x,f'(x)=1/(1+x)-1<0,f(x)在(0,1)递减,所以f(x)<f(0)=0,即ln(1+x)<x。ln(1+1/b2b3)....(1+/bnb(n+1))=1n(1+1/b2b3)+1n(1+1/b3b4)+......1n(1+1/bnb(n+1))<1/b2b3+1/b3b4+......1/bnb(n+1)<1/a2a3+1/a3a4+......1/ana(n+1)=(1/5x6+1/6x7+.....1/(n+3)(n+4))=(1/5-1/6+1/6-1/7+.......+1/(n+3)-1/(n+4)=1/5-1/(n+4)<1/5。即ln(1+1/b2b3)....(1+/bnb(n+1))<1/5,所以(1+1/b2b3)....(1+/bnb(n+1))<(e)^(1/5)。命题得证。
(3)先证ln(1+x)<x,(x>0),令f(x)=ln(1+x)-x,f'(x)=1/(1+x)-1<0,f(x)在(0,1)递减,所以f(x)<f(0)=0,即ln(1+x)<x。ln(1+1/b2b3)....(1+/bnb(n+1))=1n(1+1/b2b3)+1n(1+1/b3b4)+......1n(1+1/bnb(n+1))<1/b2b3+1/b3b4+......1/bnb(n+1)<1/a2a3+1/a3a4+......1/ana(n+1)=(1/5x6+1/6x7+.....1/(n+3)(n+4))=(1/5-1/6+1/6-1/7+.......+1/(n+3)-1/(n+4)=1/5-1/(n+4)<1/5。即ln(1+1/b2b3)....(1+/bnb(n+1))<1/5,所以(1+1/b2b3)....(1+/bnb(n+1))<(e)^(1/5)。命题得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询