2个回答
展开全部
解答:
矩估计:
E(x)
=∫_(0,1) x * (θ+1)x^θ dx
=∫_(0,1) (θ+1)x^(θ+1) dx
=(θ+1)/(θ+2)*x^(θ+2) |_(0,1)
=(θ+1)/(θ+2)
令E(x)=(Σxi)/n
则θ=1/(1-(Σxi)/n) - 2
极大似然估计:
ln p(x1, x2, ..., xn) = ln f(x1) + ln f(x2)... + ln f(xn)
=n ln(θ+1) + θ Σln(xi)
对θ求导,令导数等于0得
n/(θ+1) + Σln(xi) = 0
θ = -n/Σln(xi) - 1
由来
它是由英国统计学家皮尔逊Pearson于1894年提出的,也是最古老的一种估计法之一。对于随机变量来说,矩是其最广泛,最常用的数字特征,主要有中心矩和原点矩。
由辛钦大数定律知,简单随机样本的原点矩依概率收敛到相应的总体原点矩,这就启发我们想到用样本矩替换总体矩,进而找出未知参数的估计,基于这种思想求估计量的方法称为矩法。用矩法求得的估计称为矩法估计,简称矩估计。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询