
1个回答
展开全部
u=f(x,y,z)与xe^x-ye^y=ze^z两边都求微分:
du=fxdx+fydy+fzdz
(x+1)e^xdx-(y+1)e^ydy=(z+1)e^zdz
消去dz,得du=[fx+fz(x+1)e^x/((z+1)e^z)]dx+[fy-fz(y+1)e^y/((z+1)e^z)]dy
du=fxdx+fydy+fzdz
(x+1)e^xdx-(y+1)e^ydy=(z+1)e^zdz
消去dz,得du=[fx+fz(x+1)e^x/((z+1)e^z)]dx+[fy-fz(y+1)e^y/((z+1)e^z)]dy
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询