设函数f(x)=e^X-1-x-ax^2,
若a=0,求f(x)的单调区间若a=0,求f(x)的单调区间。若当x≥0时,f(x)≥0,求实数a的取值范围...
若a=0,求f(x)的单调区间若a=0,求f(x)的单调区间。若当x≥0时,f(x)≥0,求实数a的取值范围
展开
1个回答
展开全部
(1)a=0时,f(x)=ex-1-x,f′(x)=ex-1.
当x∈(-∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.
故f(x)在(-∞,0)单调减少,在(0,+∞)单调增加
(2)f′(x)=ex-1-2ax
由(I)知ex≥1+x,当且仅当x=0时等号成立.故f′(x)≥x-2ax=(1-2a)x,
从而当1-2a≥0,即a≤1/2
时,f′(x)≥0(x≥0),而f(0)=0,
于是当x≥0时,f(x)≥0.
由ex>1+x(x≠0)可得e-x>1-x(x≠0).
从而当a>1/2
时,f′(x)<ex-1+2a(e-x-1)=e-x(ex-1)(ex-2a),
故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.
综合得a的取值范围为(-∞,1/2]。
———您好,百度专家组很高兴为你解答,答题不易,您的采纳是我答题的动力!如果你觉得有帮助,请采纳哦,谢谢!有问题可以继续追问。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询