关于牛顿莱布尼茨公式求定积分的问题

1含有有限个第一类间断点的f(x)是可以用该公式的只不过要分段,但是有第一类间断点无原函数,那怎么找F(x)呢?2含有第二类间断点不能积分那广义积分呢?好困惑!希望您能帮... 1含有有限个第一类间断点的f(x)是可以用该公式的只不过要分段,但是有第一类间断点无原函数,那怎么找F(x)呢?
2含有第二类间断点不能积分那广义积分呢?好困惑!希望您能帮我解答多谢
展开
帐号已注销
2021-09-26 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:159万
展开全部

1、定积分的值是客观存在的,有第一类间断点的函数原函数也是存在的,只不过不能用初等函数表示,因此这个定积分的值通过牛顿莱布尼兹公式是求不出的,但是不意味着不存在,可以用数值分析中的一些方法求近似值。

2、由于定积分的定义产生的,定积分的定义是十分“狭窄”的,粗略地说,它要求函数有界,并且间断点不能太多等等,广义积分正是为了某些缺点对定积分的推广,这样推广后就可以讨论无界函数以及无穷区间上的定积分,只要看间断点或无穷远点处原函数的极限是否存在即可。

黎曼积分

定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b。

一笑而过jLNJ1
高粉答主

推荐于2016-04-29 · 每个回答都超有意思的
知道大有可为答主
回答量:1.4万
采纳率:77%
帮助的人:7543万
展开全部
1的情况定积分的值是客观存在的,而有第一类间断点的函数原函数也是存在的,只不过不能用初等函数表示,因此这个定积分的值通过牛顿莱布尼兹公式是求不出的,但是不意味着不存在,可以用数值分析中的一些方法求近似值。

2的情况是由于定积分的定义产生的,定积分的定义是十分“狭窄”的,粗略地说,它要求函数有界,并且间断点不能太多等等,而广义积分正是为了某些缺点对定积分的推广,这样推广后就可以讨论无界函数以及无穷区间上的“定积分”,只要看间断点或无穷远点处原函数的极限是否存在即可。
来自:求助得到的回答
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式