关于曲面积分~
∫∫s(xy+yz+zx)ds,其中s为锥面z=(x^2+y^2)^(1/2)被柱面x^2+y^2=2ax所截的部分。...
∫∫s(xy+yz+zx)ds,其中s为锥面z=(x^2+y^2)^(1/2)被柱面x^2+y^2=2ax所截的部分。
展开
1个回答
展开全部
解:∵αz/αx=x/√(x²+y²),αz/αy=y/√(x²+y²)
∴ds=√[1+(αz/αx)²+(αz/αy)²]dxdy
=√2dxdy
故 原式=∫∫<s>(xy+yz+zx)√2dxdy
=√2∫<-π/2,π/2>dθ∫<0,2acosθ>(r²sinθcosθ+r²sinθ+r²cosθ)rdr (做极坐标变换)
=4√2a^4∫<-π/2,π/2>(sinθcosθ+sinθ+cosθ)(cosθ)^4dθ
=4√2a^4∫<-π/2,π/2>[((cosθ)^5+(cosθ)^4)sinθ+(1-2sin²θ+(sinθ)^4)cosθ]dθ
=(4√2a^4)*[2(1-2/3+1/5)]
=64√2a^4/15。
∴ds=√[1+(αz/αx)²+(αz/αy)²]dxdy
=√2dxdy
故 原式=∫∫<s>(xy+yz+zx)√2dxdy
=√2∫<-π/2,π/2>dθ∫<0,2acosθ>(r²sinθcosθ+r²sinθ+r²cosθ)rdr (做极坐标变换)
=4√2a^4∫<-π/2,π/2>(sinθcosθ+sinθ+cosθ)(cosθ)^4dθ
=4√2a^4∫<-π/2,π/2>[((cosθ)^5+(cosθ)^4)sinθ+(1-2sin²θ+(sinθ)^4)cosθ]dθ
=(4√2a^4)*[2(1-2/3+1/5)]
=64√2a^4/15。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询