在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD中点G,连接EG、CG。
(1)证明EG⊥CG且EG⊥CG(2)将△BEF绕点B逆时针旋转90°,则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想(3)将△BEF绕点B逆时针旋转18...
(1)证明EG⊥CG且EG⊥CG
(2)将△BEF绕点B逆时针旋转90°,则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想
(3)将△BEF绕点B逆时针旋转180°,则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明 展开
(2)将△BEF绕点B逆时针旋转90°,则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想
(3)将△BEF绕点B逆时针旋转180°,则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明 展开
4个回答
展开全部
解:(1)EG=CG,EG⊥CG.(2分)
(2)EG=CG,EG⊥CG. (2分)
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由图(3)可知团戚,
∵BD平分∠ABC,∠稿或郑ABC=90°,
∴∠EBF=45°,
又∵EF⊥AB,
∴△BEF为等腰直角三角形
∴BE=EF,∠F=45°.
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=
1
2
FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
又∵FG=DG,
∠CMG=
1
2
∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC.
∴EG=CG,∠FGE=∠MGC. (2分)
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠键颂MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG. (2分
展开全部
解:(1)橡激EG=CG,EG⊥CG. (2分)
(2)EG=CG,EG⊥CG. (2分)
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,梁数袜
由图(3)可知,△BEF为等腰直角三角形,∴BE=EF,
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=1 2 FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.毕脊
∵EF=CM,
∴FM=DM,
∴∠F=45°.
又FG=DG,
∠CMG=1 2 ∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC.
∴EG=CG,∠FGE=∠MGC. (2分)
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG. (2分)
(2)EG=CG,EG⊥CG. (2分)
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,梁数袜
由图(3)可知,△BEF为等腰直角三角形,∴BE=EF,
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=1 2 FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.毕脊
∵EF=CM,
∴FM=DM,
∴∠F=45°.
又FG=DG,
∠CMG=1 2 ∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC.
∴EG=CG,∠FGE=∠MGC. (2分)
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG. (2分)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解答:解:(1) EG=CG,EG⊥CG.(2)EG=CG,EG⊥CG.
证明:延长FE交DC延长线于M,连MG.∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴液卖四边形BEMC是矩形.∴BE=CM,∠EMC=90°,又∵BE=EF,∴EF=CM.∵∠EMC=90°,FG=DG∴MG=FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
∴∠F=45°.又FG=DG,∠CMG=∠EMC=45°,∴∠F=∠GMC.闹森逗∴△GFE≌△GMC∴EG=CG,∠FGE=∠MGC.春银∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG.
证明:延长FE交DC延长线于M,连MG.∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴液卖四边形BEMC是矩形.∴BE=CM,∠EMC=90°,又∵BE=EF,∴EF=CM.∵∠EMC=90°,FG=DG∴MG=FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
∴∠F=45°.又FG=DG,∠CMG=∠EMC=45°,∴∠F=∠GMC.闹森逗∴△GFE≌△GMC∴EG=CG,∠FGE=∠MGC.春银∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)EG=CG,EG⊥CG.(2分)
(2)EG=CG,EG⊥CG. (2分)
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由图(3)歼判可知,
∵BD平分∠ABC,∠ABC=90°,
∴∠EBF=45°,
又∵EF⊥AB,
∴△BEF为等腰直角三角形
∴BE=EF,
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=
1
2
FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵氏闹改EF=CM,
∴弯世FM=DM,
∴∠F=45°.
又∵FG=DG,
∠CMG=
1
2
∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC.
∴EG=CG,∠FGE=∠MGC. (2分)
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG. (2分)
(2)EG=CG,EG⊥CG. (2分)
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由图(3)歼判可知,
∵BD平分∠ABC,∠ABC=90°,
∴∠EBF=45°,
又∵EF⊥AB,
∴△BEF为等腰直角三角形
∴BE=EF,
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=
1
2
FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵氏闹改EF=CM,
∴弯世FM=DM,
∴∠F=45°.
又∵FG=DG,
∠CMG=
1
2
∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC.
∴EG=CG,∠FGE=∠MGC. (2分)
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG. (2分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询