已知函数f(x)=sin(wx+φ)(w>0,φ<π)的部分图像如图所示
展开全部
(1)解析:由图示T/2=π/2==>T=π==>ω=2
设f(x)=-cos(2x)=-cos(2x)=-sin(π/2-2x)=sin(2x-π/2)
∴ω=2,φ=-π/2
(2)解析:设g(x)=2√2f(x/2)f(x/2-π/8)-1
∴g(x)=2√2sin(x-π/2)sin(x-3π/4)-1=-2√2cosx√2/2(-sinx-cosx)-1
=-2cosx(-sinx-cosx)-1=(sin2x+2cos^2x)-1=√2sin(2x+π/4)
单调递增区:2kπ-π/2<=2x+π/4<=2kπ+π/2==>kπ-3π/8<=x<=kπ+π/8(k∈Z)
∵x∈[0, π/2]
g(0) =√2sin(π/4)=1
g(π/8) =√2sin(π/4+π/4)=√2
g(π/2) =√2sin(π+π/4)=-1
∴g(x)在[0, π/2]上的值域为[-1, √2]
设f(x)=-cos(2x)=-cos(2x)=-sin(π/2-2x)=sin(2x-π/2)
∴ω=2,φ=-π/2
(2)解析:设g(x)=2√2f(x/2)f(x/2-π/8)-1
∴g(x)=2√2sin(x-π/2)sin(x-3π/4)-1=-2√2cosx√2/2(-sinx-cosx)-1
=-2cosx(-sinx-cosx)-1=(sin2x+2cos^2x)-1=√2sin(2x+π/4)
单调递增区:2kπ-π/2<=2x+π/4<=2kπ+π/2==>kπ-3π/8<=x<=kπ+π/8(k∈Z)
∵x∈[0, π/2]
g(0) =√2sin(π/4)=1
g(π/8) =√2sin(π/4+π/4)=√2
g(π/2) =√2sin(π+π/4)=-1
∴g(x)在[0, π/2]上的值域为[-1, √2]
展开全部
(1)
可以看出周期是π
则w=2π/T=2
至于φ,当x=0时f(x)=sinφ=-1
则根据题意,φ=-π/2
(2)
f(x)=sin(2x-π/2)=-cos2x
g(x)=2√2f(x/2)f(x/2-π/8)-1
即g(x)=2√2cosxcos(x-π/4)-1
=2cosxcosx-2cosxsinx-1
=cos2x-sin2x
=√2cos(2x-π/4)
图像就是把cos2x向右平移π/8个单位,然后乘以√2
可以看出周期是π
则w=2π/T=2
至于φ,当x=0时f(x)=sinφ=-1
则根据题意,φ=-π/2
(2)
f(x)=sin(2x-π/2)=-cos2x
g(x)=2√2f(x/2)f(x/2-π/8)-1
即g(x)=2√2cosxcos(x-π/4)-1
=2cosxcosx-2cosxsinx-1
=cos2x-sin2x
=√2cos(2x-π/4)
图像就是把cos2x向右平移π/8个单位,然后乘以√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询