某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件
某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,...
某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?
展开
展开全部
(1)当50≤x≤80时,y=210-(x-50),即y=260-x,
当80<x<140时,y=210-(80-50)-3(x-80),即y=420-3x.
则
,
(2)由利润=(售价-成本)×销售量可以列出函数关系式
w=-x2+300x-10400(50≤x≤80)
w=-3x2+540x-16800(80<x<140),
(3)当50≤x≤80时,w=-x2+300x-10400,
当x=80有最大值,最大值为7200,
当80<x<140时,w=-3x2+540x-16800,
当x=90时,有最大值,最大值为7500,
故售价定为90元.利润最大为7500元.
当80<x<140时,y=210-(80-50)-3(x-80),即y=420-3x.
则
|
(2)由利润=(售价-成本)×销售量可以列出函数关系式
w=-x2+300x-10400(50≤x≤80)
w=-3x2+540x-16800(80<x<140),
(3)当50≤x≤80时,w=-x2+300x-10400,
当x=80有最大值,最大值为7200,
当80<x<140时,w=-3x2+540x-16800,
当x=90时,有最大值,最大值为7500,
故售价定为90元.利润最大为7500元.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询