(2013?普陀区二模)如图,抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A、B,此抛物线与x轴的另一个

(2013?普陀区二模)如图,抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析... (2013?普陀区二模)如图,抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标;(3)点M为平面直角坐标系上一点,写出使点M、A、B、D为平行四边形的点M的坐标. 展开
 我来答
迷恋0270
推荐于2017-10-11 · TA获得超过179个赞
知道答主
回答量:129
采纳率:100%
帮助的人:124万
展开全部
解:(1)∵直线y=x-3与坐标轴的两个交点A、B,
∴点B(0,-3),点A(3,0),
将A与B坐标代入抛物线y=x2+bx-c得:
?c=?3
9+3b?c=0

解得:c=3,b=-2,
则抛物线的解析式是y=x2-2x-3;

(2)∵抛物线的解析式是y=x2-2x-3,
∴C(-1,0),顶点D(1,-4),
由点P为抛物线上的一个动点,故设点P(a,a2-2a-3),
∵S△APC:S△ACD=5:4,
∴(
1
2
×4×|a2-2a-3|):(
1
2
×4×4)=5:4,
整理得:a2-2a-3=5或a2-2a-3=-5(由△<0,得到无实数解,舍去),
解得:a1=4,a2=-2,
则满足条件的点P的坐标为P1(4,5),P2(-2,5);

(3)如图所示,A、B、D分别为M1M3、M1M2、M2M3的中点,
∵四边形ADBM1为平行四边形,
∴AB与M1D互相平分,即E为AB中点,E为M1D中点,
∵A(3,0),B(0,-3),
∴E(
3
2
,-
3
2
),
又∵D(1,-4),
∴M1(2,1),
∴M2(-2,-7),M3(4,-1),
则满足题意点M的坐标为:M1(2,1),M2(-2,-7),M3(4,-1).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式