一动圆与已知圆O1:(x+3)2+y2=1外切,与圆O2:(x-3)2+y2=81内切,试求动圆圆心M的轨迹方程

一动圆与已知圆O1:(x+3)2+y2=1外切,与圆O2:(x-3)2+y2=81内切,试求动圆圆心M的轨迹方程.... 一动圆与已知圆O1:(x+3)2+y2=1外切,与圆O2:(x-3)2+y2=81内切,试求动圆圆心M的轨迹方程. 展开
 我来答
TKIrH
2014-08-15 · TA获得超过124个赞
知道答主
回答量:142
采纳率:100%
帮助的人:75万
展开全部
设M(x,y),动圆M的半径为r(r>0),
则由题意知|MO1|=1+r,|MO2|=9-r,
于是|MO1|+|MO2|=10,即动点M到两个定点O1(-3,0)、O2(3,0)的距离之和为10.
又因为 10=|MO1|+|MO2|>|O1O2|=6,
所以点M在以两定点O1(-3,0)、O2(3,0)为焦点,10为长轴长的椭圆上.
设此椭圆的标准方程为
x2
a2
+
y2
b2
=1
,这里a=5,c=3,
则  b2=a2-c2=16.
因此,动圆圆心M所在的曲线方程为
x2
25
+
y2
16
=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式