设数列{an}满足:a1=a2=1,a3=2,且对于任意正整数n都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+a
设数列{an}满足:a1=a2=1,a3=2,且对于任意正整数n都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,则a1+...
设数列{an}满足:a1=a2=1,a3=2,且对于任意正整数n都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,则a1+a2+a3+…+a2013=______.
展开
展开全部
a1=a2=1,a3=2,
又∵anan+1an+2≠1,且anan+1an+2an+3=an+an+1+an+2+an+3,
则an+3=
∴a4=
=4
a5=
=1
a6=
=1
a7=
=2
a8=
=4
由以上可发现数列{an}是以4为周期的数列
则a1+a2+a3+…+a2013=503(a1+a2+a3+a4)+a1
=503×8+1=4025
故答案为:4025
又∵anan+1an+2≠1,且anan+1an+2an+3=an+an+1+an+2+an+3,
则an+3=
an+an+1+an+2 |
an?an+1?an+2?1 |
∴a4=
1+1+2 |
2?1 |
a5=
1+2+4 |
1×2×4?1 |
a6=
2+4+1 |
1×2×4?1 |
a7=
4+1+1 |
4×1×1?1 |
a8=
1+1+2 |
1×1×2?1 |
由以上可发现数列{an}是以4为周期的数列
则a1+a2+a3+…+a2013=503(a1+a2+a3+a4)+a1
=503×8+1=4025
故答案为:4025
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询