如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.(Ⅰ)证明:A1C⊥平面BED;(Ⅱ)求
如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.(Ⅰ)证明:A1C⊥平面BED;(Ⅱ)求二面角A1-DE-B的大小....
如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.(Ⅰ)证明:A1C⊥平面BED;(Ⅱ)求二面角A1-DE-B的大小.
展开
展开全部
解答:解:解法一:
依题设知AB=2,CE=1.
(Ⅰ)连接AC交BD于点F,则BD⊥AC.
由三垂线定理知,BD⊥A1C.(3分)
在平面A1CA内,连接EF交A1C于点G,
由于
=
=2
,
故Rt△A1AC∽Rt△FCE,∠AA1C=∠CFE,∠CFE与∠FCA1互余.
于是A1C⊥EF.A1C与平面BED内两条相交直线BD,EF都垂直,
所以A1C⊥平面BED.(6分)
(Ⅱ)作GH⊥DE,垂足为H,连接A1H.由三垂线定理知A1H⊥DE,
故∠A1HG是二面角A1-DE-B的平面角.(8分)
EF=
=
,CG=
=
,EG=
=
.
=
,GH=
×
=
.
又A1C=
=2
,A1G=A1C?CG=
.tan∠A1HG=
=5
.
所以二面角A1-DE-B的大小为arctan5
.((12分))
解法二:
以D为坐标原点,射线DA为x轴的正半轴,
建立如图所示直角坐标系D-xyz.
依题设,B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4).
=(0,2,1),
=(2,2,0),
=(?2,2,?4),
=(2,0,4).(3分)
(Ⅰ)因为
依题设知AB=2,CE=1.
(Ⅰ)连接AC交BD于点F,则BD⊥AC.
由三垂线定理知,BD⊥A1C.(3分)
在平面A1CA内,连接EF交A1C于点G,
由于
AA1 |
FC |
AC |
CE |
2 |
故Rt△A1AC∽Rt△FCE,∠AA1C=∠CFE,∠CFE与∠FCA1互余.
于是A1C⊥EF.A1C与平面BED内两条相交直线BD,EF都垂直,
所以A1C⊥平面BED.(6分)
(Ⅱ)作GH⊥DE,垂足为H,连接A1H.由三垂线定理知A1H⊥DE,
故∠A1HG是二面角A1-DE-B的平面角.(8分)
EF=
CF2+CE2 |
3 |
CE×CF |
EF |
| ||
|
CE2?CG2 |
| ||
3 |
EG |
EF |
1 |
3 |
1 |
3 |
EF×FD |
DE |
| ||
|
又A1C=
A
|
6 |
5
| ||
3 |
A1G |
HG |
5 |
所以二面角A1-DE-B的大小为arctan5
5 |
解法二:
以D为坐标原点,射线DA为x轴的正半轴,
建立如图所示直角坐标系D-xyz.
依题设,B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4).
DE |
DB |
A1C |
DA1 |
(Ⅰ)因为