如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形
如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=-x+m经过点C,交x轴于点D.(1)求m的值;...
如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=-x+m经过点C,交x轴于点D.(1)求m的值;(2)点P(0,t)是线段OB上的一个动点(点P不与0,B两点重合),过点P作x轴的平行线,分别交AB,OC,DC于点E,F,G,设线段EG的长为d,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,点H是线段OB上一点,连接BG交OC于点M,当以OG为直径的圆经过点M时,恰好使∠BFH=∠ABO,求此时t的值及点H的坐标.
展开
展开全部
(1)解:方法一:如图1,∵y=2x+4交x轴和y轴于A,B,
∴A(-2,0)B(0,4),
∴OA=2,OB=4,
∵四边形ABCO是平行四边形,
∴BC=OA=2 过点C作CK⊥x轴于K,
则四边形BOKC是矩形,
∴OK=BC=2,CK=OB=4,
∴C(2,4)代入y=-x+m得,4=-2+m,
∴m=6;
方法二,如图2,∵y=2x+4交x轴和y轴于A,B,
∴A(-2,0)B(0,4),
∴OA=2 OB=4,
延长DC交y轴于点N,
∵y=-x+m交x轴和y轴于点D,N,
∴D(m,0)N(0,m),
∴OD=ON,
∴∠ODN=∠OND=45°,
∵四边形ABCO是平行四边形,
∴BC∥AO,BC=OA=2,
∴∠NCB=∠ODN=∠OND=45°,
∴NB=BC=2,
∴ON=NB+OB=2+4=6,
∴m=6;
(2)解:方法一,如图3,延长DC交y轴于N分别过点E,G作x轴的垂线 垂足分别是R,Q则四边形ERQG、四边形POQG、四边形EROP是矩形,
∴ER=PO=GQ=t,
∵tan∠BAO=
=
,
∴
=
,
∴AR=
t,
∵y=-x+6交x轴和y轴于D,N,
∴OD=ON=6,
∴∠ODN=45°,
∵tan∠ODN=
,
∴DQ=t,
又∵AD=AO+OD=2+6=8,
∴EG=RQ=8-
t-t=8-
t,
∴d=-
t+8(0<t<4);
方法二,如图4,∵EG∥AD,P(O,t),
∴设E(x1,t),G(x2,t),
把E(x1,t)代入y=2x+4得t=2x1+4,
∴x1=
-2,
把G(x2,t)代入y=-x+6得t=-x2+6,
∴x2=6-t,
∴d=EG=x2-x1=(6-t)-(
-2)=8-
t,
即d=-
t+8(0<t<4);
(3)解:方法一,如图5,∵四边形ABCO是平行四边形,
∴AB∥OC,
∴∠ABO=∠BOC,
∵BP=4-t,
∴tan∠AB0=
=tan∠BOC=
,
∴EP=2-
,
∴PG=d-EP=6-t,
∵以OG为直径的圆经过点M,
∴∠OMG=90°,∠MFG=∠PFO,
∴∠BGP=∠BOC,
∴tan∠BGP=
=tan∠BOC=
,
∴
=
,
解得t=2,
∵∠BFH=∠ABO=∠BOC,∠OBF=∠FBH,
∴△BHF∽△BFO,
∴
=
∴A(-2,0)B(0,4),
∴OA=2,OB=4,
∵四边形ABCO是平行四边形,
∴BC=OA=2 过点C作CK⊥x轴于K,
则四边形BOKC是矩形,
∴OK=BC=2,CK=OB=4,
∴C(2,4)代入y=-x+m得,4=-2+m,
∴m=6;
方法二,如图2,∵y=2x+4交x轴和y轴于A,B,
∴A(-2,0)B(0,4),
∴OA=2 OB=4,
延长DC交y轴于点N,
∵y=-x+m交x轴和y轴于点D,N,
∴D(m,0)N(0,m),
∴OD=ON,
∴∠ODN=∠OND=45°,
∵四边形ABCO是平行四边形,
∴BC∥AO,BC=OA=2,
∴∠NCB=∠ODN=∠OND=45°,
∴NB=BC=2,
∴ON=NB+OB=2+4=6,
∴m=6;
(2)解:方法一,如图3,延长DC交y轴于N分别过点E,G作x轴的垂线 垂足分别是R,Q则四边形ERQG、四边形POQG、四边形EROP是矩形,
∴ER=PO=GQ=t,
∵tan∠BAO=
ER |
AR |
OB |
OA |
∴
t |
AR |
4 |
2 |
∴AR=
1 |
2 |
∵y=-x+6交x轴和y轴于D,N,
∴OD=ON=6,
∴∠ODN=45°,
∵tan∠ODN=
GQ |
QD |
∴DQ=t,
又∵AD=AO+OD=2+6=8,
∴EG=RQ=8-
1 |
2 |
3 |
2 |
∴d=-
3 |
2 |
方法二,如图4,∵EG∥AD,P(O,t),
∴设E(x1,t),G(x2,t),
把E(x1,t)代入y=2x+4得t=2x1+4,
∴x1=
t |
2 |
把G(x2,t)代入y=-x+6得t=-x2+6,
∴x2=6-t,
∴d=EG=x2-x1=(6-t)-(
t |
2 |
3 |
2 |
即d=-
3 |
2 |
(3)解:方法一,如图5,∵四边形ABCO是平行四边形,
∴AB∥OC,
∴∠ABO=∠BOC,
∵BP=4-t,
∴tan∠AB0=
EP |
BP |
1 |
2 |
∴EP=2-
t |
2 |
∴PG=d-EP=6-t,
∵以OG为直径的圆经过点M,
∴∠OMG=90°,∠MFG=∠PFO,
∴∠BGP=∠BOC,
∴tan∠BGP=
BP |
PG |
1 |
2 |
∴
4?t |
6?t |
1 |
2 |
解得t=2,
∵∠BFH=∠ABO=∠BOC,∠OBF=∠FBH,
∴△BHF∽△BFO,
∴
BH |
BF |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载