已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E

已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边B... 已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系. 展开
 我来答
尕员线1231
推荐于2017-09-10 · TA获得超过274个赞
知道答主
回答量:106
采纳率:0%
帮助的人:112万
展开全部
(1)∵△ABC和△ADE都是等边三角形,
∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.
∴∠BAC-∠CAD=∠DAE-∠CAD,即∠BAD=∠CAE.
在△ABD和△ACE中,
AB=AC
∠BAD=∠CAE
AD=AE

∴△ABD≌△ACE(SAS),
∴BD=CE.
∵BC=BD+CD,AC=BC,
∴AC=CE+CD;
(2)AC=CE+CD不成立,
AC、CE、CD之间存在的数量关系是:AC=CE-CD.
理由:∵△ABC和△ADE都是等边三角形,
∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.
∴∠BAC+∠CAD=∠DAE+∠CAD,
∴∠BAD=∠CAE             
在△ABD和△ACE中,
AB=AC
∠BAD=∠CAE
AD=AE

∴△ABD≌△ACE(SAS)                            
∴BD=CE                                          
∴CE-CD=BD-CD=BC=AC,
∴AC=CE-CD;                   
(3)补全图形(如图)
                           
AC、CE、CD之间存在的数量关系是:AC=CD-CE.
理由:∵△ABC和△ADE都是等边三角形,
∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.
∴∠BAC-∠BAE=∠DAE-∠BAE,
∴∠BAD=∠CAE             
在△ABD和△ACE中,
AB=AC
∠BAD=∠CAE
AD=AE

∴△ABD≌△ACE(SAS)                            
∴BD=CE.
∵BC=CD-BD,
∴BC=CD-CE,
∴AC=CD-CE.
378383d
2018-01-18
知道答主
回答量:5
采纳率:0%
帮助的人:2万
展开全部
AC等于ce减cd
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式