(2013?山西模拟)如图,AB是⊙O的直径,C为⊙O上一点,点D在CO的延长线上,连接BD.已知BC=BD,AB=4.(
(2013?山西模拟)如图,AB是⊙O的直径,C为⊙O上一点,点D在CO的延长线上,连接BD.已知BC=BD,AB=4.(1)若BC=23,求证:BD是⊙O的切线;(2)...
(2013?山西模拟)如图,AB是⊙O的直径,C为⊙O上一点,点D在CO的延长线上,连接BD.已知BC=BD,AB=4.(1)若BC=23,求证:BD是⊙O的切线;(2)BC=3,求CD的长.
展开
1个回答
展开全部
(1)∵AB为圆O的直径,
∴∠ACB=90°,
在Rt△ABC中,∵sinA=
=
=
,
∴∠A=60°,
∵AO=CO,
∴△AOC为等边三角形,
∴∠AOC=∠ACO=60°,
∴∠BCD=∠ACB-∠ACO=90°-60°=30°,
∵∠BOD=∠AOC=60°,
∴∠OBD=180°-(∠BOD+∠D)=90°,
∴OB⊥BD,
则BD为圆O的切线;
(2)∵AB为圆O的直径,且AB=4,
∴OB=OC=2,
∵BC=BD,
∴∠BCD=∠D,
∵OC=OB,
∴∠BCD=∠OBC,
∴∠D=∠OBC,
在△BCD和△OCB中,
∠D=∠OBC,∠BCD=∠OCB,
∴△BCD∽△OCB,
∴
=
,即
=
,
则CD=
.
∴∠ACB=90°,
在Rt△ABC中,∵sinA=
BC |
AB |
2
| ||
4 |
| ||
2 |
∴∠A=60°,
∵AO=CO,
∴△AOC为等边三角形,
∴∠AOC=∠ACO=60°,
∴∠BCD=∠ACB-∠ACO=90°-60°=30°,
∵∠BOD=∠AOC=60°,
∴∠OBD=180°-(∠BOD+∠D)=90°,
∴OB⊥BD,
则BD为圆O的切线;
(2)∵AB为圆O的直径,且AB=4,
∴OB=OC=2,
∵BC=BD,
∴∠BCD=∠D,
∵OC=OB,
∴∠BCD=∠OBC,
∴∠D=∠OBC,
在△BCD和△OCB中,
∠D=∠OBC,∠BCD=∠OCB,
∴△BCD∽△OCB,
∴
CD |
BC |
BC |
OC |
CD |
3 |
3 |
2 |
则CD=
9 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |