已知:如图,△ABC是等边三角形,D、E分别是BA、CA的延长线上的点,且AD=AE,连接ED并延长到F,使得EF=EC

已知:如图,△ABC是等边三角形,D、E分别是BA、CA的延长线上的点,且AD=AE,连接ED并延长到F,使得EF=EC,连接AF、CF、BE.(1)求证:四边形BCFD... 已知:如图,△ABC是等边三角形,D、E分别是BA、CA的延长线上的点,且AD=AE,连接ED并延长到F,使得EF=EC,连接AF、CF、BE. (1)求证:四边形BCFD是平行四边形;(2)试指出图中与AF相等的线段,并说明理由。 展开
 我来答
手机用户23597
推荐于2016-12-01 · 超过65用户采纳过TA的回答
知道答主
回答量:129
采纳率:0%
帮助的人:124万
展开全部
通过三角形全等吧求证


试题分析:(1)根据定义两组对边分别平行的四边形是平行四边形,在本题中,因为△ABC为等边三角形,AD、AE分别为CA、BA的延长线且AE=AD,所以△ADE也为等边三角形,可知EF和BC平行,又因为EC=EF,所以△ECF也为等边三角形,即CF和BD平行,来证明两组对边分别平行;
(2)从图象观察,AF在三角形ADF中,而和ADF形状相同的是三角形ABE,所以,可试着证明两三角形全等.
证明:(1)∵△ABC为等边三角形,且AE=AD,
∴由题可知∠AED=∠ADE=∠EAD=60°
∴EF∥BC,
又∵EC=EF,
∴△ECF为等边三角形,即∠EFC=∠EDB=60°,
∴CF∥BD
∴四边形BCFD为平行四边形.
(2)AF=EB.
在△AED中,∵AE=AD,∠EAD=60°,
∴∠BAE=120°,∠EDA=60°,
∴∠ADF=120°.
即∠EAB=∠ADF,
又由(1)知DF=BC=BA,
∴△ADF≌△EAB.
∴AF=EB.
点评:本题考查了平行四边形的判定,解题的关键是找准题目中的已知条件,利用平行四边形的定义进行解题.另外此题还考查了全等的应用
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式