(2012?拱墅区一模)如图,以△ABC的各边为边,在BC的同侧分别作三个正五边形.它们分别是正五边形ABFKL
(2012?拱墅区一模)如图,以△ABC的各边为边,在BC的同侧分别作三个正五边形.它们分别是正五边形ABFKL、BCJIE、ACHGD,试探究:(1)四边形ADEF是什...
(2012?拱墅区一模)如图,以△ABC的各边为边,在BC的同侧分别作三个正五边形.它们分别是正五边形ABFKL、BCJIE、ACHGD,试探究:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是正方形?(不需证明)(3)四边形ADEF一定存在吗?为什么?
展开
1个回答
展开全部
(1)解:四边形ADEF是平行四边形;
理由:∵正五边形ABFKL、BCJIE,
∴BF=BA,BE=BC,
又∵∠3=108°-∠2=∠1;
在△FBE和△ABC中,
∴△FBE≌△ABC(SAS),
∴EF=AC,∠4=∠5,
∵正五边形ACHGD,
∴AC=DA,
∴EF=DA,
又∵∠FAD=360°-∠BAF-∠4-∠CAD=360°-36°-108°-∠4=216°-∠4;
∠EFA=∠5-∠AFB=∠5-36°;
∴∠FAD+∠EFA=216°-∠4+∠5-36°=180°,
∴EF∥DA,
∴四边形ADEF是平行四边形;
(2)当∠BAC=126°,且AC=
AB(或AC=2ABcos36°)时,四边形ADEF是正方形;
理由:∵∠BAC=126°,∠BAF=36°,∠CAD=108°,
∴∠FAD=90°,
∵AF=2ABcos36°,AC=2ABcos36°,
∴AF=AC,
∴平行四边形ADEF是正方形;
(3)当∠BAC=36°时,点D、A、F在同一直线上,以A,D,E,F为顶点的四边形不存在.
理由:∵∠BAC=36°,∠FAB=36°,∠CDA=108°
∴∠DAF=36°+36°+108°=180°,
∴点D、A、F在同一直线上,
∴以A,D,E,F为顶点的四边形不存在.
理由:∵正五边形ABFKL、BCJIE,
∴BF=BA,BE=BC,
又∵∠3=108°-∠2=∠1;
在△FBE和△ABC中,
|
∴△FBE≌△ABC(SAS),
∴EF=AC,∠4=∠5,
∵正五边形ACHGD,
∴AC=DA,
∴EF=DA,
又∵∠FAD=360°-∠BAF-∠4-∠CAD=360°-36°-108°-∠4=216°-∠4;
∠EFA=∠5-∠AFB=∠5-36°;
∴∠FAD+∠EFA=216°-∠4+∠5-36°=180°,
∴EF∥DA,
∴四边形ADEF是平行四边形;
(2)当∠BAC=126°,且AC=
| ||
2 |
理由:∵∠BAC=126°,∠BAF=36°,∠CAD=108°,
∴∠FAD=90°,
∵AF=2ABcos36°,AC=2ABcos36°,
∴AF=AC,
∴平行四边形ADEF是正方形;
(3)当∠BAC=36°时,点D、A、F在同一直线上,以A,D,E,F为顶点的四边形不存在.
理由:∵∠BAC=36°,∠FAB=36°,∠CDA=108°
∴∠DAF=36°+36°+108°=180°,
∴点D、A、F在同一直线上,
∴以A,D,E,F为顶点的四边形不存在.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询