19题,求解
1个回答
展开全部
Sn=1+1/n^2+1/(n+1)^2=(n^4+2n^3+3n^2+2n+1)/(n^2*(n+1)^2)=(n*(n+1)+1)^2/(n^2*(n+1)^2)
故√Sn=√(n*(n+1)+1)^2/(n^2*(n+1)^2)=[n(n+1)+1]/[n(n+1)]
所以:
√S1=1+1-1/2
√S2=1+1/2-1/3
√S3=1+1/3-1/4
……
√Sn=1+1/n-1/(n+1)
s= 1+1-1/2 +1+1/2-1/3 1+1/3-1/4 +1+1/(n(n+1)))=n+[(1-1/2)+(1/2-1/3)+...+(1/n-1/(n+1))]=n+1-1/(n+1)
故√Sn=√(n*(n+1)+1)^2/(n^2*(n+1)^2)=[n(n+1)+1]/[n(n+1)]
所以:
√S1=1+1-1/2
√S2=1+1/2-1/3
√S3=1+1/3-1/4
……
√Sn=1+1/n-1/(n+1)
s= 1+1-1/2 +1+1/2-1/3 1+1/3-1/4 +1+1/(n(n+1)))=n+[(1-1/2)+(1/2-1/3)+...+(1/n-1/(n+1))]=n+1-1/(n+1)
更多追问追答
追问
没太明白
追答
哪里不明白?√Sn=√(n*(n+1)+1)^2/(n^2*(n+1)^2)=[n(n+1)+1]/[n(n+1)]=1+1/n(n+1)=1+1/n-1/n+1
然后依次加起来,相邻的两项相互抵消就剩下
上边的结果
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询