1个回答
展开全部
b cosC+(2a+c)cosB=0 b cosC+c*cosB+2acosB=0 正弦定理,b=asinB/sinA,c=asinC/sinA 于是(asinB/sinA)cosC+(asinC/sinA)cosB+2acosB=0 a(sinBcosC+cosBsinC)/sinA+2acosB=0 方程两边同乘以sinA得,a(sinBcosC+cosBsinC)+2asinAcosB=0 于是sinBcosC+cosBsinC+2sinAcosB=0 [约去a] sin(B+C)+2sinAcosB=0 sinA+2sinAcosB=0 [sinA=sin(180-A)=sin(B+C)] sinA(1+2cosB)=0 由于A不可能等于0或180度,故sinA不等于0,只有1+2cosB=0 2cosB= -1 cosB= -1/2 于是B=120度
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询