【一道数学题】有悬赏,要写步骤!!!
计算(2+1)×(2^2+1)×(2^4+1)×(2^8+1)×(2^16+1)×(2^32+1)...
计算(2+1)×(2^2+1)×(2^4+1)×(2^8+1)×(2^16+1)×(2^32+1)
展开
1个回答
展开全部
解:只在在原式的基础上乘以(2-1),就可以不断的形成平方差,
原式=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)
=(2^16-1)(2^16+1)(2^32+1)
=(2^32-1)(2^32+1)
=2^64-1
原式=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)
=(2^16-1)(2^16+1)(2^32+1)
=(2^32-1)(2^32+1)
=2^64-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询