已知非负实数a,b,c满足a+b+c=1,s=1/(1+a)+1/(1+b)+1/(1+c) 求证9/4≤s≤5/2
1个回答
展开全部
左边S=1/(1+a)+1/(b+1)+1/(c+1)大于等于9/(3+a+b+c)=9/4
因为0小于等于C=1-a-b小于等于1
右边S=1/(1+a)+1/(b+1)+1/(c+1)=(2+a+b)/(1+a+b+ab)+1/(1+c)=(3-C)/【2-C+ab】+1/(1+c)小于等于(3-c)/(2-c) +1/(1+c)=1+ 1/(2-c)+1/(1+c)=1+ (1+c+2-c)/【(2-c)*(1+c)】=1+ 3/【-c^2+c+2】=1 +3/【-(c-0.5)^2+2.25】小于等于1+ 3/【-1+1+2】=1+ 3/2=2.5
因为0小于等于C=1-a-b小于等于1
右边S=1/(1+a)+1/(b+1)+1/(c+1)=(2+a+b)/(1+a+b+ab)+1/(1+c)=(3-C)/【2-C+ab】+1/(1+c)小于等于(3-c)/(2-c) +1/(1+c)=1+ 1/(2-c)+1/(1+c)=1+ (1+c+2-c)/【(2-c)*(1+c)】=1+ 3/【-c^2+c+2】=1 +3/【-(c-0.5)^2+2.25】小于等于1+ 3/【-1+1+2】=1+ 3/2=2.5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询