微分方程y''+y'=xe^x 的通解

angry131
2012-05-24 · TA获得超过1793个赞
知道小有建树答主
回答量:624
采纳率:66%
帮助的人:917万
展开全部
设p=y'
p'+p=xe^x
设u=u(x)与方程相乘,使等式左边变为(pu)'
up'+up=xue^x
由于乘法法则,(pu)'=up'+u'p
所以 u'=du/dx=u
分离变量积分
du/u=dx
u=e^x
代入得 d[pe^x]=xe^(2x)*dx
pe^x=∫xe^(2x)*dx=1/2*xe^(2x)-1/2*∫e^(2x)*dx=1/2*xe^(2x)-1/4*e^(2x)+C1(分部积分法)
y'=p=1/2*xe^x-1/4*e^x+C1*e^(-x)
y=∫y'dx=∫1/2*xe^x dx -∫1/4*e^x dx +∫C1*e^(-x) dx
=1/2*xe^x-∫1/2*e^x dx -1/4*e^x -C1*e^(-x)
=1/2*xe^x -1/2*e^x -1/4*e^x -C1*e^(-x) +C2
建议验算一下,反正思路就是这样。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式