已知抛物线y=1/2x²-mx+2m-2/7。(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点
4个回答
展开全部
y=1/2x2+(2-m)x-2/7
△=(2-m)(2-m)-4*1/2*(-2/7)
=(m-2)2+4/7>0恒成立
所以方程有两个不同的解
所以无论m为何实数,该抛物线与x轴总有两个不同的交点
△=(2-m)(2-m)-4*1/2*(-2/7)
=(m-2)2+4/7>0恒成立
所以方程有两个不同的解
所以无论m为何实数,该抛物线与x轴总有两个不同的交点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题目那里是7/2吧?
∵b²-4ac=m²-4m+7>0恒成立
∴无论m为何实数,该抛物线与x轴总有两个不同的交点
采纳下呗,我做任务- -,而且我的简单易懂
∵b²-4ac=m²-4m+7>0恒成立
∴无论m为何实数,该抛物线与x轴总有两个不同的交点
采纳下呗,我做任务- -,而且我的简单易懂
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
http://photo.blog.sina.com.cn/list/blogpic.php?pid=4ea4c0a0g78d22a5c2aa5&bid=4ea4c0a00100vym9&uid=1319420064
参考资料: 仁者乐山的新浪博客
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |