设等比数列{an}的前n项和为Sn,若S3=9,S6=27,则S9=
展开全部
q=1时,S3=3a1 S6=6a1
S6/S3=6/3=2,而由已知得S6/S3=27/9=3,2≠3,因此公比q≠1
S6=a1(q^6-1)/(q-1)=a1(q^3+1)/(q^3-1)/(q-1)
S3=a1(q^3-1)/(q-1)
S6/S3=q^3+1=27/9=3
q^3=2
S3=a1(q^3 -1)/(q-1)=9
a1/(q-1)=9/(q^3 -1)=9/(2-1)=9
S9=a1(q^9 -1)/(q-1)=[a1/(q-1)][(q^3)^3 -1]
=9×(2^3 -1)
=9×7
=63
S6/S3=6/3=2,而由已知得S6/S3=27/9=3,2≠3,因此公比q≠1
S6=a1(q^6-1)/(q-1)=a1(q^3+1)/(q^3-1)/(q-1)
S3=a1(q^3-1)/(q-1)
S6/S3=q^3+1=27/9=3
q^3=2
S3=a1(q^3 -1)/(q-1)=9
a1/(q-1)=9/(q^3 -1)=9/(2-1)=9
S9=a1(q^9 -1)/(q-1)=[a1/(q-1)][(q^3)^3 -1]
=9×(2^3 -1)
=9×7
=63
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询