小学数学概念教学中涉及哪些概念? 5

 我来答
765909908a
2012-06-04
知道答主
回答量:1
采纳率:0%
帮助的人:1621
展开全部
一、算术方面

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

数量关系计算公式方面

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数×因数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

有余数的除法: 被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、 1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。 1亩=666.666平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化发。

16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)

17、互质数: 公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)

21、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3. 141592654

33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

34、什么叫代数? 代数就是用字母代替数。

35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c

一般运算规则
1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数

2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3 速度×时间=路程路程÷速度=时间 路程÷时间=速度

4 单价×数量=总价总价÷单价=数量 总价÷数量=单价

5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6 加数+加数=和和-一个加数=另一个加数

7 被减数-减数=差被减数-差=减数 差+减数=被减数

8 因数×因数=积积÷一个因数=另一个因数

9 被除数÷除数=商被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1 正方形 C周长 S面积 a边长

周长=边长×4 C=4a

面积=边长×边长 S=a×a

2 正方体 V:体积 a:棱长

表面积=棱长×棱长×6 S表=a×a×6
lxdstwxx
2012-05-25
知道答主
回答量:14
采纳率:66%
帮助的人:3.2万
展开全部
正方形 长方 高 体积 面积 线段 直线 射线 平行四边形 梯形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
推荐于2016-04-13
展开全部
在数学学习中有很多重要的东西,包括概念、定理、性质、问题等,其中概念是一个非常重要的学习数学的载体,因此概念教学应该是我们数学教学中一个非常重要的基点,很多东西都是围绕着一个核心概念展开的,因此必须重视概念教学,之所以把概念教学放在一个非常显著的地位来强调,一个重要的原因就是在我们所接触的中学数学教学中,对于概念教学有不重视的倾向,很多的课是把概念用很短的时间交代一下,定义交代完后接着变成解题了,(把概念课变成了解题课了,造成对于概念理解的不足,造成走入用做题来学习数学的误区)

那么在中学数学教学中应当采取哪些方式来进行概念教学呢?首先要弄清楚目前教学的现状,在中学数学教学实际中,学生常常对第一个问题解决不好,思维受到障碍,特别是在中考、高考过程中,对综合问题的解决不够好,而问题的产生往往是对基础的概念理解不好造成的。

对于概念教学的不重视来自于两个方面,一方面老师不够重视,另一方面学生也不重视,而实际上一个新的概念的形成是从原来的知识领域又进入到一个新的知识领域,从而建立一个新的知识领域的过程,对新概念的理解常常是因为学生对新领域知识不够重视,导致后来学生不好的学习后果,然后再回去弥补,而这个时候的弥补,又感觉没有多少味道,从而造成误解的一直持续。这个问题必须引起教师的高度重视,否则教改学生的永远是夹生饭,不光不能促进学生的发展,还很有可能引起一系列的连锁反应,制约学生的发展。

而数学思想和数学最深刻的内涵实际上是通过数学概念反映出来的,但是从学生的表现来看,无论是考试、作业都是以习题的形式来完成的,结果造成对概念不重视(这是因为训练形式的原因造成的,能否改变训练和评价的形式是一个很大、也很重要的课题),而单纯依靠大量的做题来弥补对概念理解的不足,造成学习效率不高,老师和学生都很疲劳,这是一个得不偿失的过程,而相反,如果一个概念比较清楚的话,就能够对题目或问题有一个清楚的认识,现实的情况是,概念用几分钟的时间呈现,然后靠大量的题来弥补。

概念教学中存在的几个问题:

1.概念很多,有一些我们认为是重要的概念,有一些我们认为是不重要的概念,衡量的标准是什么?其实很大程度上是教师人为造成的,教师以自己的喜好或者考察的重点上确定的,而不是从知识的完整和知识体系的完备考虑的,更谈不上考虑学生的实际了。

2.有一些概念不那么重要,一个重要的理念就是要学会识别在我们的**常教学中什么是重要的概念。所谓重要的概念就是围绕着核心的概念、能反映数学本质的概念,如何判断那一个概念是重要的,是教师必须考虑的第一个问题,出现一次或偶尔出现的概念肯定不那么重要,在学习中经常或不断出现的那一定是重要的概念,比如函数、单调性等概念以及对运算的理解。

对于一个老师来说,对于概念课,他首先要整体上把握概念在整个数学上的地位或在某一个领域中的地位,比如单调性,首先从图像上它刻画了函数的变化,反映了函数的极值问题,对应着反函数的问题(在这个问题中,只有在连续的情况下才能保持定义域和值域之间的一一对应关系),再比如,求函数零点的唯一性问题、解不等式也可以利用单调性来处理),对老师而言,虽然这堂课不是讲这个内容,但是一定要在心理上有一个整体的把握,这样才能比较好地处理这堂课的内容。学习函数的单调性,在高中阶段是一掌握函数图形的形状为主,单调上升、单调下降,基本上就把函数的形状确定了,极值问题也是由单调性确定的,以后学习的问题都是对这一问题的延伸,凡是重要的数学概念,一定要思考它在整个高中数学课程中的扮演一个什么角色,以及与其他的要学习的数学内容的内在联系,才能在一节课中有一个重要的定位,从整体到局部,再从局部到整体,来开展备课活动,备课才是有效的。但一定要把握好一个度,要清楚需要讲到什么程度,要有一个全盘的考虑,要考虑前引后联,防止一步到位,要明确第一堂课做什么,后面做什么.如果是单调性的起始课,要建立单调性的概念,帮助学生理解处理单调性函数的基本程序,还有足够的时间和载体来考虑证明的问题,定位的问题实在重要概念教学中需要考虑的重要问题,要弄清楚在这一节课中要以什么样的定位为主。

要求老师做到比较深入地研究学生了学生关于单调性的认知过程,将学生的认知过程分为几个阶段:概念的形成、概念的理解和概念的拓展,根据学生的认知特点,设计了问题串,通过这些问题,逐步引导学生按照自己的认知习惯、认知规律来建立比较合理、简单的概念的认识,从具体的函数出发,从学生的认知水平和具体的东西出发,给学生营造一个直观上是容易的印象,逐渐把它落实到文本上,在这个过程中把概念中蕴含的丰富的数学思想展现出来,从熟悉的问题中去挖掘、用好它,然后再去学习新东西,不仅仅是为了得到新概念,更重要的是体现了一种思想方法,层次感就出来了,是一种归纳式的思维,这非常重要,数学高度抽象,但是归纳的结果。

问题是数学的心脏,要重视培养学生的问题意识,上课前老师带着学生老师的安排去读书,通过认真阅读教材,理解和发现问题、提出问题,上课时师生交流,师生共同解决问题,在这个过程中,培养了学生学习的能力。但是教师在进行问题设计时,必须分清楚哪些是主要问题,哪些是次要问题,哪些是比较集中的问题,哪些是比较分散的问题,哪些是共性的问题,哪些是个别的问题?在单调性的概念中,“任意”和“区间”就是本质的东西,任意说明的是其特征,区间限定的是研究范围,它是定义域的一个子集,这些都是必须高度重视的重要问题,但有一些是次要的,比如,学生会提出问题,为什么有的是开区间,有的是闭区间?实际上这就是一个次要问题,开闭对单调性是没有影响的,它只涉及一个严格单调和非严格单调的问题,对研究函数的整体性质没有多大影响,因此不应当在此处进行过多的争论。因此,如何把握问题,是老师必须引起关注的问题。

通过学生主动参与,可以充分了解学生的思维习惯对于培养学生数学学习方法和学习意识、学习能力极其重要,这是一个教师的思维走进学生思维的重要途径。它体现的是一种全新的教育理念或者称为学习理念,展现的是以学生为主体的思想,是一种承认差异基础上的尊重。

在对学生提出的问题在回答的过程中,教师不应当以裁判的角色参与,不应当以一种权威的方式告知学生结果是什么,而应当让学生充分展示自己的思维,教师帮助学生诊断,找出症结,同时也给其他学生一个更深思考的机会和空间,因为,学生的思维往往是相通的,很多时候,老师往往以自己的思维习惯左右学生的思维习惯,是一种“我认为他应该能……”的想当然的行为,这就是为什么有的问题老师讲解十遍二十遍学生仍然不会,而同学只要讲一遍就明白的重要原因。教师的作用更多的是引和导。在学生思考的过程中,不要急于进行,应当学会等待,在等待中发现教育素材,便于教师展示教育智慧。这有利于培养学生的思维意识和学习意识,培养学生的实践和创新能力,使学生在探究的过程中获得发展。合作学习的关键是教师的设计,教师教学设计的好坏直接影响教学的效果,因此必须弄清楚教学任务、教学目标、合作方式、需要解决的问题、可能遇到的问题等都是老师必须事先考虑的问题,老师要注意在合作学习的过程中必须发挥统帅作用,不能任由学生信马由缰、自由驰骋,而应当控制在既定方针之下,这样的合作才是有效的合作。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
S小海绵
2012-05-25
知道答主
回答量:27
采纳率:0%
帮助的人:14.6万
展开全部
概念
(一)整数
1 整数的意义
自然数和0都是整数。
2 自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1 小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。
(三)分数
1 分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数
1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

二 方法
(一)数的读法和写法
1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式