2个回答
展开全部
解答如下:
C = 180° - A - B
所以tanC = tan(180° - A - B)= -tan(A + B)
左边 = tanA + tanB - tan(A + B)
= tanA + tanB - (tanA + tanB)/(1 - tanAtanB)
= [(tanA + tanB)(1 - tanAtanB)- (tanA + tanB)]/(1 - tanAtanB)
= -(tanA + tanB)(tanAtanB)/(1 - tanAtanB)
= tanAtanB [-(tanA + tanB)/(1 - tanAtanB)]
= tanAtanBtanC
= 右边
所以得证。
C = 180° - A - B
所以tanC = tan(180° - A - B)= -tan(A + B)
左边 = tanA + tanB - tan(A + B)
= tanA + tanB - (tanA + tanB)/(1 - tanAtanB)
= [(tanA + tanB)(1 - tanAtanB)- (tanA + tanB)]/(1 - tanAtanB)
= -(tanA + tanB)(tanAtanB)/(1 - tanAtanB)
= tanAtanB [-(tanA + tanB)/(1 - tanAtanB)]
= tanAtanBtanC
= 右边
所以得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询