已知等比数列的首项a1=1,公比为q,前n项和为Sn,设q≥2,bn=S2/S1+S3/S2+...+Sn+1/Sn,bn≥3n。求q的最小值

snyhs
2012-05-27 · TA获得超过9655个赞
知道大有可为答主
回答量:2150
采纳率:100%
帮助的人:985万
展开全部
an=q^(n-1)
Sn=(q^n-1)/(q-1)
S(n+1)/Sn=1+a(n+1)/Sn
=1+(q-1)q^n/(q^n-1)
=1+(q-1)/[1-(1/q)^n]

又q≥2
0<1/q≤1/2<1
0<(1/q)^(n+1)≤(1/q)^n≤(1/q)^(n-1)≤1/2
0>-(1/q)^(n+1)≥-(1/q)^n≥-(1/q)^(n-1)≥-1/2
1>1-(1/q)^(n+1)≥1-(1/q)^n≥1-(1/q)^(n-1)≥1/2>0
1<1/[1-(1/q)^(n+1)]≤1/[1-(1/q)^n]≤1/[1-(1/q)^(n-1)]≤2
S(n+1)/Sn=1+(q-1)/[1-(1/q)^n]
≥1+(q-1)/[1-(1/q)^(n+1)]

bn={1+(q-1)/[1-(1/q)^n]}+{1+(q-1)/[1-(1/q)^(n-1)]}+{1+(q-1)/[1-(1/q)^(n-2)]}+{1+(q-1)/[1-(1/q)^(n-3)]}+……+{1+(q-1)/[1-(1/q)^3]}+{1+(q-1)/[1-(1/q)^2]}+{1+(q-1)/[1-(1/q)]}
=n+(q-1)/[1-(1/q)^n]+(q-1)/[1-(1/q)^(n-1)]+(q-1)/[1-(1/q)^(n-2)]+(q-1)/[1-(1/q)^(n-3)]+……+(q-1)/[1-(1/q)^3]+(q-1)/[1-(1/q)^2]+(q-1)/[1-(1/q)]
≥n+n(q-1)/[1-(1/q)^n]
≥3n
(q-1)/[1-(1/q)^n]≥2
q-1≥2-2(1/q)^n
q^(n+1)-3q^n+2≥0

q^2-3q+2≥0,q≥2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式