如图,已知正方形ABCD,点P为射线BA上的一点,过P作PE垂直CP,且CP=PE,过E作EF‖CD

如图,已知正方形ABCD,点P为射线BA上的一点,过P作PE垂直CP,且CP=PE,过E作EF‖CD交射线BD于F(1)若CB=6,PB=2,则EF=,DF=(2)请探究... 如图,已知正方形ABCD,点P为射线BA上的一点,过P作PE垂直CP,且CP=PE,过E作EF‖CD交射线BD于F
(1)若CB=6,PB=2,则EF=,DF=
(2)请探究BF,DG和CD这三条线段之间的数量关系,写出你的结论并证明
展开
tclefhw
2012-05-30 · TA获得超过1.6万个赞
知道大有可为答主
回答量:1524
采纳率:100%
帮助的人:721万
展开全部
解:(1)连AC、EC、PF,
因为PE⊥PC PE=CP
∴∠CEP=∠CAP=45°
∴A、E、C、P四点共圆
∴∠EAC=∠EPC=90°
∴∠EAD=∠DAC=45°=∠ABD
∴AE∥BF而EF∥CD∥AB
∴AB∥EF
∴四边形AEFP是平行四边形
∴EF=AB=CB=6
∴∠APE=∠PEF
因为∠EPC=∠PBC=90°
∴∠APE=∠PCB
∴∠PEF=∠PCB
PE=PC
△PEF≅△PCB(SAS)
∴PF=PB=2
∴BF=2√(2)
因为BD=√(2)AB=6√(2)
∴DF=6√(2)-2√(2)=4√(2)
(2)分二种情形:
当P在线段BA上时
因为EF=∥CD可证四边形CDEF是平行四边形
∴DG=GF
∴DG+GF=2DG
∴BF+2DG=BD=√(2)CD
当P在BA延长线上时
BF-2DG=BD=√(2)CD
杨定昇
2012-06-04
知道答主
回答量:7
采纳率:0%
帮助的人:3.7万
展开全部
初2010级中考A卷倒数第三道 你懂得撒 简单了撒
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式