在四边形ABCD中,对角线AC、BD相交于点O,直线MN经过点O,设锐角∠DOC=∠α,将△DOC
以直线MN为对称轴翻折得到△D´OC´(D与D´对应,C与C´对应),直线AD´、BC´相交于点P。当四边形A...
以直线MN为对称轴翻折得到△D´OC´(D与D´对应,C与C´对应),直线AD´、BC´相交于点P。
当四边形ABCD是等腰梯形时,AD∥BC,如图③,∠APB与∠α有怎样的位置关系?请证明 展开
当四边形ABCD是等腰梯形时,AD∥BC,如图③,∠APB与∠α有怎样的位置关系?请证明 展开
1个回答
展开全部
∠APB+∠α=180°
证:
△DOC≌△D'OC',所以DO=D'O
等腰梯形ABCD,所以DO=AO,
所以D'O=AO,
同理可得C'O=BO
并且∠D'OC'=∠AOB=∠DOC=∠α
所以∠D'OC'-∠AOC'=∠AOB-∠AOC'
即∠D'OA=∠C'OB,
所以△D'OA∽△C'OB,
所以∠D'AO=∠C'BO,
所以∠PAO+∠PBO=180°,
所以在四边形AOBP中,∠APB+∠AOP=180°,
所以∠AOB=∠APC'=∠α
所以∠APB+∠α=180°
证:
△DOC≌△D'OC',所以DO=D'O
等腰梯形ABCD,所以DO=AO,
所以D'O=AO,
同理可得C'O=BO
并且∠D'OC'=∠AOB=∠DOC=∠α
所以∠D'OC'-∠AOC'=∠AOB-∠AOC'
即∠D'OA=∠C'OB,
所以△D'OA∽△C'OB,
所以∠D'AO=∠C'BO,
所以∠PAO+∠PBO=180°,
所以在四边形AOBP中,∠APB+∠AOP=180°,
所以∠AOB=∠APC'=∠α
所以∠APB+∠α=180°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询