已知样本x1,x2,x3..xn的方差为S^2,求(1)ax1,ax2,ax3,...,axn的平均数
1个回答
展开全部
(1)a(x_)
(2)a^2S^2
证明: s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]
(s新^2=(1/n)[(ax1-ax_)^2+(ax2-ax_)^2+...+(axn-ax_)^2]
=(1/n)[a^2(x1-x_)^2+a^2(x2-x_)^2+...+a^2(xn-x_)^2]
=a^2*(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2] =
a^2S^2
(2)a^2S^2
证明: s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]
(s新^2=(1/n)[(ax1-ax_)^2+(ax2-ax_)^2+...+(axn-ax_)^2]
=(1/n)[a^2(x1-x_)^2+a^2(x2-x_)^2+...+a^2(xn-x_)^2]
=a^2*(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2] =
a^2S^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询