
已知函数f(x)满足当x>=4时,f(x)=(1/2)^x,当x<4时,f(x)=f(x+1),则f(2+log23)=
1个回答
展开全部
解析:
因为log2 2<log2 3<log2 4,即1<log2 3<2
所以:3<2+log2 3<4且4<2+log2 3<5
那么:f(2+log2 3)=f(3+log2 3)
=(1/2)^(3+log2 3)
=(1/2)^3 * (1/2)^(log2 3)
=(1/8)*[2^(-log2 3)]
=(1/8)*[2^(log2 1/3)
=(1/8)*(1/3)
=1/24
因为log2 2<log2 3<log2 4,即1<log2 3<2
所以:3<2+log2 3<4且4<2+log2 3<5
那么:f(2+log2 3)=f(3+log2 3)
=(1/2)^(3+log2 3)
=(1/2)^3 * (1/2)^(log2 3)
=(1/8)*[2^(-log2 3)]
=(1/8)*[2^(log2 1/3)
=(1/8)*(1/3)
=1/24
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询