已知数列(Xn),(Yn)满足X1=X2=1,Y1=Y2=2并且X(n+1)/Xn=
已知数列{xn}、{yn}满足x1=x2=1,y1=y2=2并且x(n+1)/xn=λxn/x(n-1),y(n+1)/yn>=λyn/y(n-1)λ为非零实数,n=2,...
已知数列{xn }、{yn}满足x1=x2=1 ,y1=y2=2并且x(n+1)/xn=λxn/x(n-1),y(n+1)/yn>=λyn/y(n-1)λ为非零实数,n=2,3,4,…).
(1)若x1、x3、x5成等比数列,求参数λ的值;
(2)当λ>0时,证明:x(n+1)/y(n+1)<=xn/yn .(n∈N*)
(3)当λ>1时,证明(x1-y1)/(x2-y2)+(x2-y2)/(x3-y3)+省略号+(xn-yn)/(xn+1-yn+1)<λ/(λ-1)(n∈N*). 展开
(1)若x1、x3、x5成等比数列,求参数λ的值;
(2)当λ>0时,证明:x(n+1)/y(n+1)<=xn/yn .(n∈N*)
(3)当λ>1时,证明(x1-y1)/(x2-y2)+(x2-y2)/(x3-y3)+省略号+(xn-yn)/(xn+1-yn+1)<λ/(λ-1)(n∈N*). 展开
3个回答
展开全部
(1)解:由已知x1=x2=1,且x3x2=λ
x2x1
∴x3=λ,同理可知x4=λ3,x5=λ6,若x1、x3、x5成等比数列,则x32=x1x5,即λ2=λ6.而λ≠0,解得λ=±1.
(2)证明:(Ⅰ)由已知λ>0,x1=x2=1及y1=y2=2,可得xn>0,yn>0.由不等式的性质,有yn+1yn≥λ
ynyn-1≥λ 2yn-1yn-2…≥
λ n-1y2y1=λn-1;
另一方面,xn+1xn=λ
xnxn-1=λ 2xn-1xn-2…λ n-1x2x1=λn-1.
因此,yn+1yn≥λ n-1=xn+1xn(n∈N*).故xn+1yn+1≤
xnyn(n∈N*).
(Ⅱ)当λ>1时,由(Ⅰ)可知,yn>xn≥1(n∈N*).
又由(Ⅰ)xn+1yn+1≤
xnyn(n∈N*),则yn+1-xn+1xn+1≥yn-xnxn,
从而yn+1-xn+1yn-xn≥xn+1xn(n∈N*).
∴x1-y1x2-y2+
x2-y2x3-y3+…+
xn-ynxn+1-yn+1=
1-(
1λ)21-
1λ<
λλ-1(n∈N*)
x2x1
∴x3=λ,同理可知x4=λ3,x5=λ6,若x1、x3、x5成等比数列,则x32=x1x5,即λ2=λ6.而λ≠0,解得λ=±1.
(2)证明:(Ⅰ)由已知λ>0,x1=x2=1及y1=y2=2,可得xn>0,yn>0.由不等式的性质,有yn+1yn≥λ
ynyn-1≥λ 2yn-1yn-2…≥
λ n-1y2y1=λn-1;
另一方面,xn+1xn=λ
xnxn-1=λ 2xn-1xn-2…λ n-1x2x1=λn-1.
因此,yn+1yn≥λ n-1=xn+1xn(n∈N*).故xn+1yn+1≤
xnyn(n∈N*).
(Ⅱ)当λ>1时,由(Ⅰ)可知,yn>xn≥1(n∈N*).
又由(Ⅰ)xn+1yn+1≤
xnyn(n∈N*),则yn+1-xn+1xn+1≥yn-xnxn,
从而yn+1-xn+1yn-xn≥xn+1xn(n∈N*).
∴x1-y1x2-y2+
x2-y2x3-y3+…+
xn-ynxn+1-yn+1=
1-(
1λ)21-
1λ<
λλ-1(n∈N*)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-06-05
展开全部
x3=λ,x4=λ^3,x5=λ^6,
由x1,x3,x5成等比数列,得
λ^2=λ^6,λ≠0,
∴λ=土1.
由x1,x3,x5成等比数列,得
λ^2=λ^6,λ≠0,
∴λ=土1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询