5.求证:cos2(A+B)-sin2(A-B)=cos 2Acos 2B.
1个回答
2020-03-19
展开全部
cos²(A+B)-sin²(A-B)
=[cos(A+B)-sin(A-B)]×[cos(A+B)+sin(A-B)]
=[cosAcosB-sinAsinB-sinAcosB+cosAsinB]×[cosAcosB-sinAsinB+sinAcosB-cosAsinB]
=[cosA(cosB+sinB)-sinA(cosB+sinB)]×[cosA(cosB-sinB)+cosA(cosB-sinB)]
=(cosA-sinA)×(cosB+sinB)×(cosA+cosA)×(cosB-sinB)
=(cos²A-sin²A)×(cos²B-sin²B)
=cos2Acos2B
=[cos(A+B)-sin(A-B)]×[cos(A+B)+sin(A-B)]
=[cosAcosB-sinAsinB-sinAcosB+cosAsinB]×[cosAcosB-sinAsinB+sinAcosB-cosAsinB]
=[cosA(cosB+sinB)-sinA(cosB+sinB)]×[cosA(cosB-sinB)+cosA(cosB-sinB)]
=(cosA-sinA)×(cosB+sinB)×(cosA+cosA)×(cosB-sinB)
=(cos²A-sin²A)×(cos²B-sin²B)
=cos2Acos2B
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询