设函数g(x)=(x+1)ln(x+1)-x,f(x)=a(x+1)^2ln(x+1)+bx,曲线

y=f(x)在原点(0,0)处的切线方程为y=0,且经过点(e-1,e^2-e+1)(1)求y=f(x)表达式,并证明:当x》0时,g(x)》0(2)若当x》0时,f(x... y=f(x)在原点(0,0)处的切线方程为y=0,且经过点(e-1,e^2-e+1)
(1) 求y=f(x)表达式,并证明:当x》0时,g(x)》0
(2) 若当x》0时,f(x)》mx^2恒成立,求实数m的取值范围
展开
 我来答
汤旭杰律师
2014-01-09 · 律师
汤旭杰律师
采纳数:135 获赞数:48526

向TA提问 私信TA
展开全部

(1)f(x)=a(x+1)²ln(x+1)+bx
     f'(x)=2a(x+1)ln(x+1)+a(x+1)+b
     f'(0)=a+b=0
        得 a=-b
     f(x)经过点(e-1,e^2-e+1)
     则 e²-e+1=ae²+b(e-1)
                    =a(e²-e+1)
    得 a=1,b=-1
     f(x)=(x+1)²ln(x+1)-x
     g(x)=(x+1)ln(x+1)-x
     g'(x)=ln(x+1)+1-1=ln(x+1)
     当 x>0时 g'(x)>0    g(x)单调增
         g(0)=0  则 x>0时 g(x)≥0

(2) t(x)=f(x)-mx²≥0
      t(0)=0
     f'(x)=2a(x+1)ln(x+1)+a(x+1)+b-2mx

回答

t'(x)=2(x+1)ln(x+1)+(x+1)-1-2mx
      =2(x+1)[1+ln(x+1)]-1-2mx
      ≥2(x+1)-1-2mx  (x≥0)
        =(2-m)x-1>0        (说明:t'(x)>0  t(x)为单调增,t(0)=0  则当x≥0时 t(x)≥0成立)
      即 (2-m)x>1
     当 2-m>0时 x≥0
     故 m<2

 

【希望得到好评!谢谢,祝您学习愉快!】

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式